cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004413 Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-12).

This page as a plain text file.
%I A004413 #21 Sep 20 2018 09:18:41
%S A004413 1,-24,312,-2912,21816,-139152,783328,-3986112,18650424,-81251896,
%T A004413 332798544,-1291339296,4776117216,-16922753616,57683178432,
%U A004413 -189821722688,604884735288,-1871370360240,5633654421720
%N A004413 Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-12).
%H A004413 Seiichi Manyama, <a href="/A004413/b004413.txt">Table of n, a(n) for n = 0..10000</a>
%F A004413 a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)), set m = 12 for this sequence. - _Vaclav Kotesovec_, Aug 18 2015
%F A004413 From _Ilya Gutkovskiy_, Sep 20 2018: (Start)
%F A004413 G.f.: 1/theta_3(x)^12, where theta_3() is the Jacobi theta function.
%F A004413 G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^12. (End)
%t A004413 nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 18 2015 *)
%o A004413 (PARI) q='q+O('q^99); Vec(((eta(q)*eta(q^4))^2/eta(q^2)^5)^12) \\ _Altug Alkan_, Sep 20 2018
%Y A004413 Cf. A000122, A000145.
%K A004413 sign
%O A004413 0,2
%A A004413 _N. J. A. Sloane_