This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004415 #19 Sep 20 2018 09:06:18 %S A004415 1,-28,420,-4480,38052,-273336,1723008,-9770240,50722980,-244273820, %T A004415 1102294984,-4698110592,19034512000,-73696070840,273868321536, %U A004415 -980502270720,3392689809572,-11376760267320,37060195850020 %N A004415 Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-14). %H A004415 Seiichi Manyama, <a href="/A004415/b004415.txt">Table of n, a(n) for n = 0..10000</a> %F A004415 a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)), set m = 14 for this sequence. - _Vaclav Kotesovec_, Aug 18 2015 %F A004415 From _Ilya Gutkovskiy_, Sep 20 2018: (Start) %F A004415 G.f.: 1/theta_3(x)^14, where theta_3() is the Jacobi theta function. %F A004415 G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^14. (End) %t A004415 nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^14, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 18 2015 *) %o A004415 (PARI) q='q+O('q^99); Vec(((eta(q)*eta(q^4))^2/eta(q^2)^5)^14) \\ _Altug Alkan_, Sep 20 2018 %Y A004415 Cf. A000122, A276286. %K A004415 sign %O A004415 0,2 %A A004415 _N. J. A. Sloane_