cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004482 Tersum n + 1 (answer recorded in base 10).

This page as a plain text file.
%I A004482 #47 Apr 18 2025 03:18:29
%S A004482 1,2,0,4,5,3,7,8,6,10,11,9,13,14,12,16,17,15,19,20,18,22,23,21,25,26,
%T A004482 24,28,29,27,31,32,30,34,35,33,37,38,36,40,41,39,43,44,42,46,47,45,49,
%U A004482 50,48,52,53,51,55,56,54,58,59,57,61,62
%N A004482 Tersum n + 1 (answer recorded in base 10).
%C A004482 Tersum m + n: write m and n in base 3 and add mod 3 with no carries; e.g., 5 + 8 = "21" + "22" = "10" = 1.
%C A004482 Sprague-Grundy values for game of Wyt Queens.
%D A004482 E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 76.
%H A004482 F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://doi.org/10.37236/8905">Queens in exile: non-attacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), Article P1.52.
%H A004482 Andreas Dress, Achim Flammenkamp, and Norbert Pink, <a href="http://dx.doi.org/10.1006/aama.1998.0632">Additive periodicity of the Sprague-Grundy function of certain Nim games</a>, Adv. Appl. Math., 22, p. 249-270 (1999).
%H A004482 Gabriel Nivasch, <a href="https://library.slmath.org/books/Book56/files/43nivasch.pdf">More on the Sprague-Grundy function for Wythoff's game</a>, pages 377-410 in "Games of No Chance 3", MSRI Publications Volume 56, 2009. See Table 1.
%H A004482 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).
%F A004482 Periodic with period 3 and saltus 3: a(n) = 3*floor(n/3) + ((n+1) mod 3).
%F A004482 a(n) = n - 2*cos(2*(n+1)*Pi/3). - _Wesley Ivan Hurt_, Sep 29 2017
%F A004482 Sum_{n>=3} (-1)^(n+1)/a(n) = 1/2 - log(2)/3. - _Amiram Eldar_, Aug 21 2023
%t A004482 LinearRecurrence[{1,0,1,-1},{1,2,0,4},70] (* or *) Table[3*Floor[n/3]+ Mod[ n+1,3],{n,0,70}] (* _Harvey P. Dale_, Nov 29 2014 *)
%Y A004482 This sequence is row 1 of table A004481.
%Y A004482 a(n) = A061347(n+1) + n.
%Y A004482 Third column of triangle A296339.
%K A004482 nonn,easy,base
%O A004482 0,2
%A A004482 _N. J. A. Sloane_
%E A004482 More terms from _Erich Friedman_