A064211
Inverse of sequence A004487 considered as a permutation of the nonnegative integers.
Original entry on oeis.org
10, 3, 11, 6, 7, 8, 0, 1, 2, 4, 5, 19, 15, 9, 17, 18, 12, 13, 14, 27, 16, 24, 30, 31, 20, 21, 22, 23, 35, 25, 26, 29, 28, 36, 42, 43, 32, 33, 34, 47, 48, 37, 38, 39, 40, 41, 54, 55, 44, 45, 46, 59, 60, 49, 50, 51, 52, 53
Offset: 0
A004481
Table of Sprague-Grundy values for Wythoff's game (Wyt Queens) read by antidiagonals.
Original entry on oeis.org
0, 1, 1, 2, 2, 2, 3, 0, 0, 3, 4, 4, 1, 4, 4, 5, 5, 5, 5, 5, 5, 6, 3, 3, 6, 3, 3, 6, 7, 7, 4, 2, 2, 4, 7, 7, 8, 8, 8, 0, 7, 0, 8, 8, 8, 9, 6, 6, 1, 6, 6, 1, 6, 6, 9, 10, 10, 7, 9, 9, 8, 9, 9, 7, 10, 10, 11, 11, 11, 10, 0, 10, 10, 0, 10, 11, 11, 11, 12, 9, 9, 12, 1, 1, 3, 1, 1, 12, 9, 9, 12
Offset: 0
Table begins
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
1, 2, 0, 4, 5, 3, 7, 8, 6, 10, 11, 9, ...
2, 0, 1, 5, 3, 4, 8, 6, 7, 11, 9, ...
3, 4, 5, 6, 2, 0, 1, 9, 10, 12, ...
4, 5, 3, 2, 7, 6, 9, 0, 1, ...
5, 3, 4, 0, 6, 8, 10, 1, ...
6, 7, 8, 1, 9, 10, 3, ...
7, 8, 6, 9, 0, 1, ...
8, 6, 7, 10, 1, ...
9, 10, 11, 12, ...
10, 11, 9, ...
11, 9, ...
12, ...
...
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 76.
- Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
- R. K. Guy, The unity of combinatorics, Proc. 25th Iranian Math. Conf, Tehran, (1994), Math. Appl 329 129-159, Kluwer Dordrecht 1995, Math. Rev. 96k:05001.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5049
- Uri Blass and Aviezri S. Fraenkel, The Sprague-Grundy function for Wythoff's game, Theoretical Computer Science 75.3 (1990): 311-333. See Table 2.
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- A. Dress, A. Flammenkamp and N. Pink, Additive periodicity of the Sprague-Grundy function of certain Nim games, Adv. Appl. Math., 22, p. 249-270 (1999).
- Gabriel Nivasch, More on the Sprague-Grundy function for Wythoff's game, pages 377-410 in "Games of No Chance 3", MSRI Publications Volume 56, 2009. See Table 1.
- Rémy Sigrist, Colored representation of T(x,y) for x = 0..999 and y = 0..999 (where the hue is function of T(x,y) and black pixels correspond to zeros)
- Rémy Sigrist, PARI program for A004481
See
A317205 for triangle of values on or below main diagonal.
Similar to but different from
A004489.
-
mex[list_] := mex[list] = Min[Complement[Range[0, Length[list]], list]];
move[Wnim, {a_, b_}] := move[Wnim, {a, b}] =
Union[Table[{i, b}, {i, 0, a - 1}], Table[{a, i}, {i, 0, b - 1}],
Table[{a - i, b - i}, {i, 1, Min[a, b]}]];
SpragueGrundy[game_, list_] := SpragueGrundy[game, list] =
mex[SpragueGrundy[game, #] & /@ move[game, list]];
t[n_, m_] := SpragueGrundy[Wnim, {n - 1, m - 1}];
Flatten@Table[t[n - m + 1, m], {n, 11}, {m, n}] (* Birkas Gyorgy, Apr 19 2011 *)
-
See Links section.
Showing 1-2 of 2 results.
Comments