This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004489 #32 Dec 26 2021 20:57:35 %S A004489 0,1,1,2,2,2,3,0,0,3,4,4,1,4,4,5,5,5,5,5,5,6,3,3,6,3,3,6,7,7,4,7,7,4, %T A004489 7,7,8,8,8,8,8,8,8,8,8,9,6,6,0,6,6,0,6,6,9,10,10,7,1,1,7,1,1,7,10,10, %U A004489 11,11,11,2,2,2,2,2,2,11,11,11,12,9,9,12,0,0,3,0,0,12,9,9,12,13,13,10,13,13,1,4,4,1,13,13,10,13,13 %N A004489 Table of tersums m + n (answers written in base 10). %H A004489 Alois P. Heinz, <a href="/A004489/b004489.txt">Antidiagonals d = 0..140, flattened</a> %F A004489 Tersum m + n: write m and n in base 3 and add mod 3 with no carries, e.g. 5 + 8 = "21" + "22" = "10" = 1. %e A004489 Table begins: %e A004489 0 1 2 3 4 5 6 ... %e A004489 1 2 0 4 5 3 7 ... %e A004489 2 0 1 5 3 4 8 ... %e A004489 3 4 5 6 7 8 0 ... %e A004489 4 5 3 7 8 6 1 ... %e A004489 5 3 4 8 6 7 2 ... %e A004489 6 7 8 0 1 2 3 ... %e A004489 ... %p A004489 T:= proc(n, m) local t, h, r, i; %p A004489 t, h, r:= n, m, 0; %p A004489 for i from 0 while t>0 or h>0 do %p A004489 r:= r +3^i *irem(irem(t, 3, 't') +irem(h, 3, 'h'), 3) %p A004489 od; r %p A004489 end: %p A004489 seq(seq(T(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Sep 07 2011 %t A004489 T[n_, m_] := Module[{t, h, r, i, remt, remh}, {t, h, r} = {n, m, 0}; For[i = 0, t>0 || h>0, i++, r = r + 3^i*Mod[({t, remt} = QuotientRemainder[t, 3 ]; remt) + ({h, remh} = QuotientRemainder[h, 3]; remh), 3]]; r]; Table[Table[T[n, d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* _Jean-François Alcover_, Jan 07 2014, translated from Maple *) %o A004489 (PARI) T(n,m) = fromdigits(Vec(Pol(digits(n,3)) + Pol(digits(m,3)))%3, 3); \\ _Kevin Ryde_, Apr 06 2021 %o A004489 (Python) %o A004489 def T(n, m): %o A004489 k, pow3 = 0, 1 %o A004489 while n + m > 0: %o A004489 n, rn = divmod(n, 3) %o A004489 m, rm = divmod(m, 3) %o A004489 k, pow3 = k + pow3*((rn+rm)%3), pow3*3 %o A004489 return k %o A004489 print([T(n, d-n) for d in range(14) for n in range(d+1)]) # _Michael S. Branicky_, May 04 2021 %Y A004489 Similar to but different from A004481. %Y A004489 Main diagonal gives A004488. %Y A004489 Cf. A003987 (analogous sequence for base 2). %K A004489 nonn,base,tabl,look,easy,nice %O A004489 0,4 %A A004489 _N. J. A. Sloane_ %E A004489 More terms from Larry Reeves (larryr(AT)acm.org), Jan 23 2001