This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004532 #22 Feb 16 2025 08:32:28 %S A004532 1,0,0,0,180,512,0,0,3380,5120,0,0,16320,23040,0,0,52020,66560,0,0, %T A004532 129064,153600,0,0,262080,313344,0,0,489600,565760,0,0,840500,936960, %U A004532 0,0,1330420,1497600,0,0,2050344,2263040 %N A004532 Theta series of {D_10}^{+} lattice. %D A004532 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120. %H A004532 Seiichi Manyama, <a href="/A004532/b004532.txt">Table of n, a(n) for n = 0..10000</a> %H A004532 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a> %F A004532 From _Seiichi Manyama_, Oct 21 2018: (Start) %F A004532 Expansion of (theta_2(q)^10 + theta_3(q)^10 + theta_4(q)^10)/2 in powers of q^(1/2). %F A004532 Expansion of (Sum_{k=-inf..inf} q^((k+1/2)^2))^10 + (Sum_{k=-inf..inf} q^(k^2))^10 + (Sum_{k=-inf..inf} (-1)^k * q^(k^2))^10 in powers of q^(1/2). (End) %Y A004532 Cf. A000122 (theta_3(q)), A002448 (theta_4(q)), A008432. %K A004532 nonn %O A004532 0,5 %A A004532 _N. J. A. Sloane_