cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004675 Theta series of extremal even unimodular lattice in dimension 72.

This page as a plain text file.
%I A004675 #22 Oct 26 2023 01:00:37
%S A004675 1,0,0,0,6218175600,15281788354560,9026867482214400,
%T A004675 1989179450818560000,213006159759990870000,13144087517631410995200,
%U A004675 525100718690287495741440,14756609779472604266496000,310160311536865273422120000
%N A004675 Theta series of extremal even unimodular lattice in dimension 72.
%C A004675 The construction of such a lattice was announced by G. Nebe, Aug 12 2010. - _N. J. A. Sloane_, Aug 13 2010
%D A004675 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 195.
%H A004675 N. J. A. Sloane, <a href="/A004675/b004675.txt">Table of n, a(n) for n = 0..1000</a>
%H A004675 J.-C. Belfiore and P. Sole, <a href="http://arxiv.org/abs/1010.4484">A Type II lattice of norm 8 in dimension 72</a>, arXiv:1010.4484 [cs.IT], 2010. - _N. J. A. Sloane_, Oct 23 2010
%H A004675 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/neb72.html">Home page for this lattice</a>
%H A004675 G. Nebe, <a href="http://arxiv.org/abs/1008.2862">An extremal even unimodular lattice of dimension 72</a>, Preprint, arXiv:1008.2862 [math.NT], Aug 12 2010. - _N. J. A. Sloane_, Aug 13 2010
%e A004675 Theta series begins 1 + 6218175600*q^8 + 15281788354560*q^10 + 9026867482214400*q^12 + 1989179450818560000*q^14 + 213006159759990870000*q^16 + 13144087517631410995200*q^18 + 525100718690287495741440*q^20 + 14756609779472604266496000*q^22 + ...
%p A004675 # get th2, th3, th4 = Jacobi theta constants out to degree maxd
%p A004675 maxd:=2001:
%p A004675 temp0:=trunc(evalf(sqrt(maxd)))+2: a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od: th2:=series(a,q,maxd):
%p A004675 a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od: th3:=series(a,q,maxd):
%p A004675 th4:=series(subs(q=-q,th3),q,maxd):
%p A004675 # get Leech etc
%p A004675 t1:=th2^8+th3^8+th4^8: e8:=series(t1/2,q,maxd):
%p A004675 t1:=th2^8*th3^8*th4^8: delta24:=series(t1/256,q,maxd):
%p A004675 leech:=series(e8^3-720*delta24,q,maxd):
%p A004675 u1:=series(leech^3,q,maxd):
%p A004675 #u2:=series(leech^2*delta24,q,maxd):
%p A004675 u3:=series(leech*delta24^2,q,maxd):
%p A004675 u4:=series(delta24^3,q,maxd):
%p A004675 u5:=series(u1-589680*u3-78624000*u4,q,maxd);
%t A004675 terms = 13;
%t A004675 maxd = 2*terms;
%t A004675 th1 = EllipticTheta[1, 0, q];
%t A004675 th2 = EllipticTheta[2, 0, q];
%t A004675 th3 = EllipticTheta[3, 0, q];
%t A004675 th4 = th3 /. q -> -q;
%t A004675 t1 = th2^8 + th3^8 + th4^8;
%t A004675 e8 = Series[t1/2, {q, 0, maxd}];
%t A004675 t1 = th2^8*th3^8*th4^8;
%t A004675 delta24 = Series[t1/256, {q, 0, maxd}];
%t A004675 leech = Series[e8^3 - 720*delta24, {q, 0, maxd}];
%t A004675 u1 = Series[leech^3, {q, 0, maxd}];
%t A004675 u3 = Series[leech*delta24^2, {q, 0, maxd}];
%t A004675 u4 = Series[delta24^3, {q, 0, maxd}];
%t A004675 u5 = Series[u1 - 589680*u3 - 78624000*u4, {q, 0, maxd}];
%t A004675 CoefficientList[u5, q^2][[1 ;; terms]](* _Jean-François Alcover_, Jul 08 2017, adapted from Maple *)
%Y A004675 Cf. A018236.
%K A004675 nonn
%O A004675 0,5
%A A004675 _N. J. A. Sloane_