This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004732 #24 Dec 26 2021 20:59:33 %S A004732 1,1,2,1,8,5,16,7,128,21,256,33,1024,429,2048,715,32768,2431,65536, %T A004732 4199,262144,29393,524288,52003,4194304,185725,8388608,334305, %U A004732 33554432,9694845,67108864,17678835,2147483648 %N A004732 Numerator of n!!/(n+3)!!. %D A004732 S. Janson, On the traveling fly problem, Graph Theory Notes of New York, Vol. XXXI, 17, 1996. %H A004732 Robert Israel, <a href="/A004732/b004732.txt">Table of n, a(n) for n = 0..3327</a> %H A004732 S. Janson, <a href="http://www2.math.uu.se/~svante/papers/sj114.pdf">On the traveling fly problem</a> %F A004732 From _Robert Israel_, Jan 07 2019: (Start) %F A004732 a(2*m) = 2^(2*m+1 - A048881(m) - A007814(m+1)). %F A004732 a(2*m+1) = A000265(A000108(m+1)). (End) %p A004732 f:= proc(n) local m,r; %p A004732 m:= floor(n/2); %p A004732 if n::even then 2^(2*m - padic:-ordp(binomial(2*m+1,m),2) - padic:-ordp(m+1,2)) %p A004732 else %p A004732 r:= binomial(2*m+2,m+1)/(m+2); %p A004732 r/2^padic:-ordp(r,2); %p A004732 fi %p A004732 end proc: %p A004732 map(f, [$0..50]); # _Robert Israel_, Jan 07 2019 %t A004732 Numerator[Table[n!!/(n+3)!!,{n,0,40}]] (* _Harvey P. Dale_, Nov 26 2015 *) %o A004732 (PARI) a(n) = numerator(prod(i=0, floor((n-1)/2), n-2*i)/prod(i=0, floor((n+2)/2), n+3-2*i)) \\ _Michel Marcus_, May 24 2013 %Y A004732 Cf. A000108, A000265, A004733, A007814, A048881. %K A004732 nonn,frac %O A004732 0,3 %A A004732 _N. J. A. Sloane_