This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004747 #87 Jul 31 2025 07:34:15 %S A004747 1,2,1,10,6,1,80,52,12,1,880,600,160,20,1,12320,8680,2520,380,30,1, %T A004747 209440,151200,46480,7840,770,42,1,4188800,3082240,987840,179760, %U A004747 20160,1400,56,1,96342400,71998080,23826880,4583040,562800,45360,2352,72,1 %N A004747 Triangle read by rows: the Bell transform of the triple factorial numbers A008544 without column 0. %C A004747 Previous name was: Triangle of numbers related to triangle A048966; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497. %C A004747 T(n,m) = S2p(-2; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n, m) (Stirling 2nd kind). T(n,1)= A008544(n-1). %C A004747 T(n,m), n>=m>=1, enumerates unordered n-vertex m-forests composed of m plane (aka ordered) increasing (rooted) trees where vertices of out-degree r>=0 come in r+1 different types (like an (r+1)-ary vertex). Proof from the e.g.f. of the first column Y(z) = 1 - (1-3*x)^(1/3) and the F. Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0) = 0, with out-degree o.g.f. phi(w)=1/(1-w)^2. - _Wolfdieter Lang_, Oct 12 2007 %C A004747 Also the Bell transform of the triple factorial numbers A008544 which adds a first column (1,0,0 ...) on the left side of the triangle. For the definition of the Bell transform see A264428. See A051141 for the triple factorial numbers A032031 and A203412 for the triple factorial numbers A007559 as well as A039683 and A132062 for the case of double factorial numbers. - _Peter Luschny_, Dec 21 2015 %H A004747 G. C. Greubel, <a href="/A004747/b004747.txt">Rows n = 1..50 of the triangle, flattened</a> %H A004747 F. Bergeron, Ph. Flajolet and B. Salvy, <a href="http://algo.inria.fr/flajolet/Publications/BeFlSa92.pdf">Varieties of increasing trees</a>, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48. %H A004747 P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004. %H A004747 Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Celeste/celeste3.html">Two Approaches to Normal Order Coefficients</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5. %H A004747 Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/08/23/a-class-of-differential-operators-and-the-stirling-numbers/">A Class of Differential Operators and the Stirling Numbers</a> %H A004747 Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) #09.8.3. %H A004747 Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4. %H A004747 Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Lang/lang.html">Combinatorial Interpretation of Generalized Stirling Numbers</a>, J. Int. Seqs. Vol. 12 (2009) #09.3.3. %H A004747 Mathias Pétréolle and Alan D. Sokal, <a href="https://arxiv.org/abs/1907.02645">Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions</a>, arXiv:1907.02645 [math.CO], 2019. %H A004747 <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a> %F A004747 T(n, m) = n!*A048966(n, m)/(m!*3^(n-m)); %F A004747 T(n+1, m) = (3*n-m)*T(n, m)+ T(n, m-1), for n >= m >= 1, with T(n, m) = 0, for n<m, and T(n, 0) = 0, T(1, 1) = 1. %F A004747 E.g.f. of m-th column: ( 1 - (1-3*x)^(1/3) )^m/m!. %F A004747 Sum_{k=1..n} T(n, k) = A015735(n). %F A004747 For a formula expressed as special values of hypergeometric functions 3F2 see the Maple program below. - _Karol A. Penson_, Feb 06 2004 %F A004747 T(n,1) = A008544(n-1). - _Peter Luschny_, Dec 23 2015 %e A004747 Triangle begins: %e A004747 1; %e A004747 2, 1; %e A004747 10, 6, 1; %e A004747 80, 52, 12, 1; %e A004747 880, 600, 160, 20, 1; %e A004747 12320, 8680, 2520, 380, 30, 1; %e A004747 209440, 151200, 46480, 7840, 770, 42, 1; %e A004747 Tree combinatorics for T(3,2)=6: Consider first the unordered forest of m=2 plane trees with n=3 vertices, namely one vertex with out-degree r=0 (root) and two different trees with two vertices (one root with out-degree r=1 and a leaf with r=0). The 6 increasing labelings come then from the forest with rooted (x) trees x, o-x (1,(3,2)), (2,(3,1)) and (3,(2,1)) and similarly from the second forest x, x-o (1,(2,3)), (2,(1,3)) and (3,(1,2)). %p A004747 T := (n, m) -> 3^n/m!*(1/3*m*GAMMA(n-1/3)*hypergeom([1-1/3*m, 2/3-1/3*m, 1/3-1/3*m], [2/3, 4/3-n], 1)/GAMMA(2/3)-1/6*m*(m-1)*GAMMA(n-2/3)*hypergeom( [1-1/3*m, 2/3-1/3*m, 4/3-1/3*m], [4/3, 5/3-n], 1)/Pi*3^(1/2)*GAMMA(2/3)): %p A004747 for n from 1 to 6 do seq(simplify(T(n,k)),k=1..n) od; %p A004747 # _Karol A. Penson_, Feb 06 2004 %p A004747 # The function BellMatrix is defined in A264428. %p A004747 # Adds (1,0,0,0, ..) as column 0. %p A004747 BellMatrix(n -> mul(3*k+2, k=(0..n-1)), 9); # _Peter Luschny_, Jan 29 2016 %t A004747 (* First program *) %t A004747 T[1,1]= 1; T[_, 0]= 0; T[0, _]= 0; T[n_, m_]:= (3*(n-1)-m)*T[n-1, m]+T[n-1, m-1]; %t A004747 Flatten[Table[T[n, m], {n,12}, {m,n}] ][[1 ;; 45]] (* _Jean-François Alcover_, Jun 16 2011, after recurrence *) %t A004747 (* Second program *) %t A004747 f[n_, m_]:= m/n Sum[Binomial[k, n-m-k] 3^k (-1)^(n-m-k) Binomial[n+k-1, n-1], {k, 0, n-m}]; Table[n! f[n, m]/(m! 3^(n-m)), {n,12}, {m,n}]//Flatten (* _Michael De Vlieger_, Dec 23 2015 *) %t A004747 (* Third program *) %t A004747 rows = 12; %t A004747 T[n_, m_]:= BellY[n, m, Table[Product[3k+2, {k, 0, j-1}], {j, 0, rows}]]; %t A004747 Table[T[n, m], {n,rows}, {m,n}]//Flatten (* _Jean-François Alcover_, Jun 22 2018 *) %o A004747 (Sage) # uses [bell_transform from A264428] %o A004747 triplefactorial = lambda n: prod(3*k+2 for k in (0..n-1)) %o A004747 def A004747_row(n): %o A004747 trifact = [triplefactorial(k) for k in (0..n)] %o A004747 return bell_transform(n, trifact) %o A004747 [A004747_row(n) for n in (0..10)] # _Peter Luschny_, Dec 21 2015 %o A004747 (Magma) %o A004747 function T(n,k) // T = A004747 %o A004747 if k eq 0 then return 0; %o A004747 elif k eq n then return 1; %o A004747 else return (3*(n-1)-k)*T(n-1,k) + T(n-1,k-1); %o A004747 end if; %o A004747 end function; %o A004747 [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Oct 03 2023 %Y A004747 Cf. A015735 (row sums). %Y A004747 Cf. A007559, A008277, A008544, A032031, A039683. %Y A004747 Cf. A048966, A051141, A132062, A203412, A264428. %Y A004747 Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), this sequence (m=3), A000369 (m=4), A011801 (m=5), A013988 (m=6). %K A004747 easy,nonn,tabl %O A004747 1,2 %A A004747 _Wolfdieter Lang_ %E A004747 New name from _Peter Luschny_, Dec 21 2015