This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004755 #61 Jul 13 2022 10:14:41 %S A004755 3,6,7,12,13,14,15,24,25,26,27,28,29,30,31,48,49,50,51,52,53,54,55,56, %T A004755 57,58,59,60,61,62,63,96,97,98,99,100,101,102,103,104,105,106,107,108, %U A004755 109,110,111,112,113,114,115,116,117,118,119,120,121,122 %N A004755 Binary expansion starts 11. %C A004755 a(n) is the smallest value > a(n-1) (or > 1 for n=1) for which A001511(a(n)) = A001511(n). - _Franklin T. Adams-Watters_, Oct 23 2006 %H A004755 Kenny Lau, <a href="/A004755/b004755.txt">Table of n, a(n) for n = 1..16383</a> (first 1023 terms from T. D. Noe) %H A004755 Ralf Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences ...</a> %H A004755 Ralf Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a> %F A004755 a(2n) = 2*a(n), a(2n+1) = 2*a(n) + 1 + 2*[n==0]. %F A004755 a(n) = n + 2 * 2^floor(log_2(n)) = A004754(n) + A053644(n). %F A004755 a(n) = 2n + A080079(n). - _Benoit Cloitre_, Feb 22 2003 %F A004755 G.f.: (1/(1+x)) * (1 + Sum_{k>=0, t=x^2^k} 2^k*(2t+t^2)/(1+t)). %F A004755 a(n) = n + 2^(floor(log_2(n)) + 1) = n + A062383(n). - _Franklin T. Adams-Watters_, Oct 23 2006 %F A004755 a(2^m+k) = 2^(m+1) + 2^m + k, m >= 0, 0 <= k < 2^m. - _Yosu Yurramendi_, Aug 08 2016 %e A004755 12 in binary is 1100, so 12 is in the sequence. %p A004755 a:= proc(n) n+2*2^floor(log(n)/log(2)) end: seq(a(n),n=1..60); # _Muniru A Asiru_, Oct 16 2018 %t A004755 Flatten[Table[FromDigits[#,2]&/@(Join[{1,1},#]&/@Tuples[{0,1},n]),{n,0,5}]] (* _Harvey P. Dale_, Feb 05 2015 *) %o A004755 (PARI) a(n)=n+2*2^floor(log(n)/log(2)) %o A004755 (PARI) is(n)=n>2 && binary(n)[2] \\ _Charles R Greathouse IV_, Sep 23 2012 %o A004755 (Haskell) %o A004755 import Data.List (transpose) %o A004755 a004755 n = a004755_list !! (n-1) %o A004755 a004755_list = 3 : concat (transpose [zs, map (+ 1) zs]) %o A004755 where zs = map (* 2) a004755_list %o A004755 -- _Reinhard Zumkeller_, Dec 04 2015 %o A004755 (Python) %o A004755 f = open('b004755.txt', 'w') %o A004755 lo = 3 %o A004755 hi = 4 %o A004755 i = 1 %o A004755 while i<16384: %o A004755 for x in range(lo,hi): %o A004755 f.write(str(i)+" "+str(x)+"\n") %o A004755 i += 1 %o A004755 lo <<= 1 %o A004755 hi <<= 1 %o A004755 # _Kenny Lau_, Jul 05 2016 %o A004755 (Python) %o A004755 def A004755(n): return n+(1<<n.bit_length()) # _Chai Wah Wu_, Jul 13 2022 %Y A004755 Equals union of A079946 and A080565. %Y A004755 Cf. A004754 (10), A004756 (100), A004757 (101), A004758 (110), A004759 (111). %Y A004755 Cf. A004760, A053644, A062050, A076877. %K A004755 nonn,base,easy %O A004755 1,1 %A A004755 _N. J. A. Sloane_ %E A004755 Edited by _Ralf Stephan_, Oct 12 2003