cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004760 List of numbers whose binary expansion does not begin 10.

This page as a plain text file.
%I A004760 #64 Jul 27 2023 08:19:18
%S A004760 0,1,3,6,7,12,13,14,15,24,25,26,27,28,29,30,31,48,49,50,51,52,53,54,
%T A004760 55,56,57,58,59,60,61,62,63,96,97,98,99,100,101,102,103,104,105,106,
%U A004760 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122
%N A004760 List of numbers whose binary expansion does not begin 10.
%C A004760 For n >= 2 sequence {a(n+2)} is the minimal recursive such that A007814(a(n+2))=A007814(n). - _Vladimir Shevelev_, Apr 27 2009
%C A004760 A053645(a(n)) = n-1 for n > 0. - _Reinhard Zumkeller_, May 20 2009
%C A004760 a(n+1) is also the number of nodes in a complete binary tree with n nodes in the bottommost level. - _Jacob Jona Fahlenkamp_, Feb 01 2023
%H A004760 Michael De Vlieger, <a href="/A004760/b004760.txt">Table of n, a(n) for n = 1..10000</a>
%H A004760 Vladimir Shevelev, <a href="http://arXiv.org/abs/0904.2101">Several results on sequences which are similar to the positive integers</a>, arXiv:0904.2101 [math.NT], 2009. [_Vladimir Shevelev_, Apr 15 2009]
%F A004760 For n > 0, a(n) = 3n - 2 - A006257(n-1). - _Ralf Stephan_, Sep 16 2003
%F A004760 a(0) = 0, a(1) = 1, for n > 0: a(2n) = 2*a(n) + 1, a(2n+1) = 2*a(n+1). - _Philippe Deléham_, Feb 29 2004
%F A004760 For n >= 3, A007814(a(n)) = A007814(n-2). - _Vladimir Shevelev_, Apr 15 2009
%F A004760 a(n+2) = min{m>a(n+1): A007814(m)=A007814(n)}; A010060(a(n+2)) = 1-A010060(n). - _Vladimir Shevelev_, Apr 27 2009
%F A004760 a(1)=0, a(2)=1, a(2^m+k+2) = 2^(m+1) + 2^m+k, m >= 0, 0 <= k < 2^m. - _Yosu Yurramendi_, Jul 30 2016
%F A004760 G.f.: x/(1-x)^2 + (x/(1-x))*Sum_{k>=0} 2^k*x^(2^k). - _Robert Israel_, Aug 03 2016
%F A004760 a(2^m+k) = A004761(2^m+k) + 2^m, m >= 0, 0 <= k < 2^m. - _Yosu Yurramendi_, Aug 08 2016
%F A004760 For n > 0, a(n+1) = n + 2^ceiling(log_2(n)) - 1. - _Jacob Jona Fahlenkamp_, Feb 01 2023
%p A004760 0,1,seq(seq(3*2^d+x,x=0..2^d-1),d=0..6); # _Robert Israel_, Aug 03 2016
%t A004760 Select[Range@ 125, If[Length@ # < 2, #, Take[#, 2]] &@ IntegerDigits[#, 2] != {1, 0} &] (* _Michael De Vlieger_, Aug 02 2016 *)
%o A004760 (PARI) is(n)=n<2 || binary(n)[2] \\ _Charles R Greathouse IV_, Sep 23 2012
%o A004760 (PARI) print1("0, 1");for(i=0,5,for(n=3<<i,(4<<i)-1,print1(", "n))) \\ _Charles R Greathouse IV_, Sep 23 2012
%o A004760 (PARI) a(n) = if(n<=2,n-1, (n-=2) + 2<<logint(n,2)); \\ _Kevin Ryde_, Jul 22 2022
%o A004760 (R)
%o A004760 maxrow <- 8 # by choice
%o A004760 b01 <- 1
%o A004760 for(m in 0:maxrow){
%o A004760   b01 <- c(b01,rep(1,2^(m+1))); b01[2^(m+1):(2^(m+1)+2^m-1)] <- 0
%o A004760 }
%o A004760 a <- which(b01 == 1)
%o A004760 # _Yosu Yurramendi_, Mar 30 2017
%o A004760 (Python)
%o A004760 def A004760(n): return m+(1<<m.bit_length()) if (m:=n-2)>0 else n-1 # _Chai Wah Wu_, Jul 26 2023
%Y A004760 Cf. A004761, A007814, A010060, A159559, A159560, A159615, A159619, A159629, A159698, A004759.
%K A004760 nonn,easy,base
%O A004760 1,3
%A A004760 _N. J. A. Sloane_
%E A004760 Offset changed to 1, b-file corrected. - _N. J. A. Sloane_, Aug 07 2016