This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004766 #37 Aug 07 2023 19:56:45 %S A004766 5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81,85,89,93, %T A004766 97,101,105,109,113,117,121,125,129,133,137,141,145,149,153,157,161, %U A004766 165,169,173,177,181,185,189,193,197,201,205,209,213,217,221,225 %N A004766 Numbers whose binary expansion ends 01. %C A004766 These are the numbers for which zeta(2*x+1) needs just 3 terms to be evaluated. - _Jorge Coveiro_, Dec 16 2004 %C A004766 The binary representation of a(n) has exactly the same number of 0's and 1's as the binary representation of a(n+1). - _Gil Broussard_, Dec 18 2008 %C A004766 Number of monomials in n-th power of x^4+x^3+x^2+x+1. - _Artur Jasinski_, Oct 06 2008 %H A004766 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A004766 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A004766 a(n) = 8*n-a(n-1)-2 (with a(1)=5). - _Vincenzo Librandi_, Nov 18 2010 %F A004766 From _Colin Barker_, Jun 24 2013: (Start) %F A004766 a(n) = 2*a(n-1)-a(n-2). %F A004766 G.f.: -x*(x-5) / (x-1)^2. (End) %F A004766 E.g.f.: exp(x)*(1 + 4*x) - 1. - _Stefano Spezia_, Feb 02 2023 %p A004766 seq( 4*x+1, x=1..100 ); %t A004766 a = {}; k = x^4 + x^3 + x^2 + x + 1; m = k; Do[AppendTo[a, Length[m]]; m = Expand[m*k], {n, 1, 100}]; a (* _Artur Jasinski_, Oct 06 2008 *) %t A004766 Select[Range[2,250],Take[IntegerDigits[#,2],-2]=={0,1}&] (* or *) LinearRecurrence[{2,-1},{5,9},70] (* _Harvey P. Dale_, Aug 07 2023 *) %o A004766 (PARI) a(n)=4*n+1 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A004766 Essentially same as A016813. %K A004766 nonn,easy %O A004766 1,1 %A A004766 _N. J. A. Sloane_