This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004780 #49 Jun 04 2024 17:06:55 %S A004780 3,6,7,11,12,13,14,15,19,22,23,24,25,26,27,28,29,30,31,35,38,39,43,44, %T A004780 45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,67,70,71,75, %U A004780 76,77,78,79,83,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 %N A004780 Binary expansion contains 2 adjacent 1's. %C A004780 Complement of A003714. It appears that n is in the sequence if and only if C(3n,n) is even. - _Benoit Cloitre_, Mar 09 2003 %C A004780 Since the binary representation of these numbers contains two adjacent 1's, so for these values of n, we will have (n XOR 2n XOR 3n) != 0, and thus a two player Nim game with three heaps of (n, 2n, 3n) stones will be a winning configuration for the first player. - _V. Raman_, Sep 17 2012 %C A004780 A048728(a(n)) > 0. - _Reinhard Zumkeller_, May 13 2014 %C A004780 The set of numbers x such that Or(x,3*x) <> 3*x. - _Gary Detlefs_, Jun 04 2024 %H A004780 Reinhard Zumkeller, <a href="/A004780/b004780.txt">Table of n, a(n) for n = 1..10000</a> %H A004780 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A004780 a(n) ~ n. - _Charles R Greathouse IV_, Sep 19 2012 %p A004780 q:= n-> verify([1$2], Bits[Split](n), 'sublist'): %p A004780 select(q, [$0..200])[]; # _Alois P. Heinz_, Oct 22 2021 %o A004780 (PARI) is(n)=bitand(n,n+n)>0 \\ _Charles R Greathouse IV_, Sep 19 2012 %o A004780 (Haskell) %o A004780 a004780 n = a004780_list !! (n-1) %o A004780 a004780_list = filter ((> 1) . a048728) [1..] %o A004780 -- _Reinhard Zumkeller_, May 13 2014 %o A004780 (Python) %o A004780 from itertools import count, islice %o A004780 def A004780_gen(startvalue=1): # generator of terms >= startvalue %o A004780 return filter(lambda n:n&(n<<1), count(max(startvalue,1))) %o A004780 A004780_list = list(islice(A004780_gen(),30)) # _Chai Wah Wu_, Jul 13 2022 %Y A004780 Cf. A005809, A048728, A242408. %Y A004780 Complement: A003714. %Y A004780 Subsequences (apart from any initial zero-term): A001196, A004755, A004767, A033428, A277335. %K A004780 nonn,easy,base %O A004780 1,1 %A A004780 _N. J. A. Sloane_ %E A004780 Offset corrected by _Reinhard Zumkeller_, Jul 28 2010