cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004790 Numbers k >= 2 such that if 1 < j < k then (fractional part of log k) < (fractional part of log j).

This page as a plain text file.
%I A004790 #20 Jun 22 2021 01:01:17
%S A004790 2,3,8,21,55,149,404,1097,2981,162755,1202605,3269018,8886111,
%T A004790 24154953,178482301,9744803447,26489122130,195729609429,532048240602,
%U A004790 1446257064292,3931334297145,10686474581525,29048849665248,78962960182681,583461742527455,1586013452313431
%N A004790 Numbers k >= 2 such that if 1 < j < k then (fractional part of log k) < (fractional part of log j).
%C A004790 Sequence lists all numbers k > 1 for which the fractional part of log(k) reaches a record low. For n > 1, this can happen only when a(n) = ceiling(e^m) for some positive integer m; see Example section. - _Jon E. Schoenfield_, May 28 2018
%H A004790 Jon E. Schoenfield, <a href="/A004790/b004790.txt">Table of n, a(n) for n = 1..100</a>
%e A004790 From _Jon E. Schoenfield_, May 28 2018: (Start)
%e A004790 k = ceiling(e^m) yields a term for some but not all positive integers m:
%e A004790 .
%e A004790    m |      k=ceiling(e^m)       |          log(k)
%e A004790   ---+---------------------------+--------------------------
%e A004790    1 |                 3 = a(2)  |  1.0986122886681096913...
%e A004790    2 |                 8 = a(3)  |  2.0794415416798359282...
%e A004790    3 |                21 = a(4)  |  3.0445224377234229965...
%e A004790    4 |                55 = a(5)  |  4.0073331852324709186...
%e A004790    5 |               149 = a(6)  |  5.0039463059454591409...
%e A004790    6 |               404 = a(7)  |  6.0014148779611500697...
%e A004790    7 |              1097 = a(8)  |  7.0003344602752302459...
%e A004790    8 |              2981 = a(9)  |  8.0000140936780714441...
%e A004790    9 |              8104         |  9.0001130459285193087...
%e A004790   10 |             22027         | 10.0000242525841575280...
%e A004790   11 |             59875         | 11.0000143347132163589...
%e A004790   12 |            162755 = a(10) | 12.0000012815651115743...
%e A004790   13 |            442414         | 13.0000013742591718739...
%e A004790   14 |           1202605 = a(11) | 14.0000005952373691014...
%e A004790   15 |           3269018 = a(12) | 15.0000001919622191103...
%e A004790   16 |           8886111 = a(13) | 16.0000000539597288735...
%e A004790   17 |          24154953 = a(14) | 17.0000000102018291255...
%e A004790   18 |          65659970         | 18.0000000131384387554...
%e A004790   19 |         178482301 = a(15) | 19.0000000002062542837...
%e A004790   20 |         485165196         | 20.0000000012165129058...
%e A004790   21 |        1318815735         | 21.0000000003918555785...
%e A004790   22 |        3584912847         | 22.0000000002422397629...
%e A004790   23 |        9744803447 = a(16) | 23.0000000000770767110...
%e A004790   24 |       26489122130 = a(17) | 24.0000000000059091314...
%e A004790   25 |       72004899338         | 25.0000000000085289679...
%e A004790   26 |      195729609429 = a(18) | 26.0000000000008237677...
%e A004790   27 |      532048240602 = a(19) | 27.0000000000003785057...
%e A004790   28 |     1446257064292 = a(20) | 28.0000000000003628859...
%e A004790   29 |     3931334297145 = a(21) | 29.0000000000002436642...
%e A004790   30 |    10686474581525 = a(22) | 30.0000000000000503302...
%e A004790   31 |    29048849665248 = a(23) | 31.0000000000000197862...
%e A004790   32 |    78962960182681 = a(24) | 32.0000000000000038605...
%e A004790   33 |   214643579785917         | 33.0000000000000043578...
%e A004790   34 |   583461742527455 = a(25) | 34.0000000000000002032...
%e A004790   35 |  1586013452313431 = a(26) | 35.0000000000000001714...
%e A004790   36 |  4311231547115196         | 36.0000000000000001792...
%e A004790 .
%e A004790 For k = ceiling(e^m) > 2, 0 < frac(log(k)) < e^(-m), so frac(log(k)) must approach 0 as m increases, but it does not do so monotonically; at values of m where frac(log(k)) is particularly small relative to e^(-m) (e.g., at m = 8 or m = 19), the next term after a(n) = k = ceiling(e^m) can be as large as a(n+1) = ceiling(e^(ceiling(-log(frac(log(k)))))).
%e A004790 (End)
%o A004790 (PARI) lista(n) = {last = frac(log(2));for (k=2, n, new = frac(log(k)); if (new < last, print1 (k, ", "); last = new;););} \\ _Michel Marcus_, Mar 21 2013
%Y A004790 Cf. A004791.
%K A004790 nonn
%O A004790 1,1
%A A004790 _Clark Kimberling_
%E A004790 More terms from _David W. Wilson_
%E A004790 a(24)-a(26) from _Jon E. Schoenfield_, May 28 2018