A004794 Least positive integer k such that the fractional part of k*sqrt(5) has its n initial partial quotients all equal to 1.
3, 7, 7, 28, 45, 189, 799, 2091, 2091, 8856, 14329, 60697, 257115, 673135, 673135, 2851444, 4613733, 19544085, 82790071, 216747219, 216747219, 918155952, 1485607537, 6293134513, 26658145587, 69791931223, 69791931223, 295643364940
Offset: 1
Keywords
Formula
a(n) = (Fib(12[ n/6 ] + S_(n mod 6))+1)/2 where S = (2, 5, 7, 7, 10, 11). - David W. Wilson, May 15 1997
Empirical g.f.: -x*(x^12 -x^10 +3*x^9 +4*x^7 -356*x^6 +144*x^5 +17*x^4 +21*x^3 +4*x +3) / ((x -1)*(x^2 -3*x +1)*(x^2 +3*x +1)*(x^4 -3*x^3 +8*x^2 -3*x +1)*(x^4 +3*x^3 +8*x^2 +3*x +1)). - Colin Barker, Jul 14 2013
Extensions
More terms from David W. Wilson, May 15 1997