cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004803 Numbers that are the sum of 3 nonzero 10th powers.

This page as a plain text file.
%I A004803 #26 May 02 2023 14:42:08
%S A004803 3,1026,2049,3072,59051,60074,61097,118099,119122,177147,1048578,
%T A004803 1049601,1050624,1107626,1108649,1166674,2097153,2098176,2156201,
%U A004803 3145728,9765627,9766650,9767673,9824675,9825698,9883723,10814202,10815225,10873250
%N A004803 Numbers that are the sum of 3 nonzero 10th powers.
%C A004803 As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020
%H A004803 David A. Corneth, <a href="/A004803/b004803.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%e A004803 From _David A. Corneth_, Aug 01 2020: (Start)
%e A004803 17258390288153 is in the sequence as 17258390288153 = 14^10 + 14^10 + 21^10.
%e A004803 42930989049225 is in the sequence as 42930989049225 = 19^10 + 20^10 + 22^10.
%e A004803 323760702520401 is in the sequence as 323760702520401 = 23^10 + 26^10 + 26^10. (End)
%t A004803 kmax = 9*10^15; (* max term *)
%t A004803 m = kmax^(1/10) // Ceiling;
%t A004803 Table[k = x^10 + y^10 + z^10; If[k <= kmax, k, Nothing], {x, 1, m}, {y, x, m}, {z, y, m}] // Flatten // Union (* _Jean-François Alcover_, Jul 19 2017, updated May 02 2023 *)
%Y A004803 A###### (x, y): Numbers that are the form of x nonzero y-th powers.
%Y A004803 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
%K A004803 nonn,easy
%O A004803 1,1
%A A004803 _N. J. A. Sloane_
%E A004803 Removed incorrect program. - _David A. Corneth_, Aug 01 2020