This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004804 #23 Aug 01 2020 23:49:52 %S A004804 4,1027,2050,3073,4096,59052,60075,61098,62121,118100,119123,120146, %T A004804 177148,178171,236196,1048579,1049602,1050625,1051648,1107627,1108650, %U A004804 1109673,1166675,1167698,1225723,2097154,2098177,2099200,2156202,2157225 %N A004804 Numbers that are the sum of 4 nonzero 10th powers. %C A004804 As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020 %H A004804 David A. Corneth, <a href="/A004804/b004804.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe) %e A004804 From _David A. Corneth_, Aug 01 2020: (Start) %e A004804 65969099123 is in the sequence as 65969099123 = 7^10 + 7^10 + 9^10 + 12^10. %e A004804 1099804917226 is in the sequence as 1099804917226 = 4^10 + 5^10 + 7^10 + 16^10. %e A004804 1164925542026 is in the sequence as 1164925542026 = 5^10 + 9^10 + 12^10 + 16^10. (End) %t A004804 k = 4; p = 10; amax = 3*10^6; bmax = amax^(1/p) // Ceiling; Clear[b]; b[0] = 1; Select[Table[Total[Array[b, k]^p], {b[1], b[0], bmax}, Evaluate[ Sequence @@ Table[{b[j], b[j-1], bmax}, {j, 1, k}]]] // Flatten // Union, # <= amax&] (* _Jean-François Alcover_, Jul 19 2017 *) %Y A004804 A###### (x, y): Numbers that are the form of x nonzero y-th powers. %Y A004804 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2). %K A004804 nonn,easy %O A004804 1,1 %A A004804 _N. J. A. Sloane_ %E A004804 Removed incorrect program. - _David A. Corneth_, Aug 01 2020