This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004805 #29 Aug 04 2020 15:33:31 %S A004805 5,1028,2051,3074,4097,5120,59053,60076,61099,62122,63145,118101, %T A004805 119124,120147,121170,177149,178172,179195,236197,237220,295245, %U A004805 1048580,1049603,1050626,1051649,1052672,1107628,1108651,1109674,1110697,1166676,1167699,1168722,1225724,1226747 %N A004805 Numbers that are the sum of 5 positive 10th powers. %C A004805 As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020 %H A004805 David A. Corneth, <a href="/A004805/b004805.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe) %e A004805 From _David A. Corneth_, Aug 01 2020: (Start) %e A004805 10352707051 is in the sequence as 10352707051 = 1^10 + 5^10 + 6^10 + 7^10 + 10^10. %e A004805 59130893253 is in the sequence as 59130893253 = 7^10 + 9^10 + 9^10 + 11^10 + 11^10. %e A004805 69011865378 is in the sequence as 69011865378 = 6^10 + 6^10 + 9^10 + 9^10 + 12^10. (End) %t A004805 k = 5; p = 10; amax = 2*10^6; bmax = amax^(1/p) // Ceiling; Clear[b]; b[0] = 1; Select[Table[Total[Array[b, k]^p], {b[1], b[0], bmax}, Evaluate[ Sequence @@ Table[{b[j], b[j - 1], bmax}, {j, 1, k}]]] //Flatten // Union, # <= amax&] (* _Jean-François Alcover_, Jul 19 2017 *) %Y A004805 A###### (x, y): Numbers that are the form of x nonzero y-th powers. %Y A004805 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2). %K A004805 nonn,easy %O A004805 1,1 %A A004805 _N. J. A. Sloane_ %E A004805 Removed incorrect program. - _David A. Corneth_, Aug 01 2020