cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004822 Numbers that are the sum of 11 positive 11th powers.

This page as a plain text file.
%I A004822 #21 Dec 01 2020 14:32:04
%S A004822 11,2058,4105,6152,8199,10246,12293,14340,16387,18434,20481,22528,
%T A004822 177157,179204,181251,183298,185345,187392,189439,191486,193533,
%U A004822 195580,197627,354303,356350,358397,360444,362491,364538,366585,368632,370679,372726,531449,533496,535543
%N A004822 Numbers that are the sum of 11 positive 11th powers.
%C A004822 As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020
%H A004822 David A. Corneth, <a href="/A004822/b004822.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%e A004822 From _David A. Corneth_, Aug 01 2020: (Start)
%e A004822 460807606 is in the sequence as 460807606 = 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 3^11 + 3^11 + 5^11 + 5^11 + 6^11.
%e A004822 795925198 is in the sequence as 795925198 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 4^11 + 4^11 + 5^11 + 6^11 + 6^11.
%e A004822 1504395992 is in the sequence as 1504395992 = 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 4^11 + 5^11 + 6^11 + 6^11 + 6^11 + 6^11. (End)
%t A004822 M = 6347807907; m = M^(1/11) // Ceiling; Reap[
%t A004822 For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
%t A004822 For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
%t A004822 For[g = f, g <= m, g++, For[h = g, h <= m, h++, For[i = h, i <= m, i++,
%t A004822 For[j = i, j <= m, j++, For[k = j, k <= m, k++,
%t A004822 s = a^11+b^11+c^11+d^11+e^11+f^11+g^11+h^11+i^11+j^11+k^11;
%t A004822 If[s <= M, Sow[s]]]]]]]]]]]]]][[2, 1]] // Union (* _Jean-François Alcover_, Dec 01 2020 *)
%Y A004822 Cf. A008455.
%Y A004822 A###### (x, y): Numbers that are the form of x nonzero y-th powers.
%Y A004822 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
%K A004822 nonn,easy
%O A004822 1,1
%A A004822 _N. J. A. Sloane_