This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004825 #43 Oct 27 2023 08:19:44 %S A004825 0,1,2,3,8,9,10,16,17,24,27,28,29,35,36,43,54,55,62,64,65,66,72,73,80, %T A004825 81,91,92,99,118,125,126,127,128,129,133,134,136,141,152,153,155,160, %U A004825 179,189,190,192,197,216,217,218,224,225,232,243,244,250,251,253 %N A004825 Numbers that are the sum of at most 3 positive cubes. %C A004825 Or: numbers which are the sum of 3 (not necessarily distinct) nonnegative cubes. - _R. J. Mathar_, Sep 09 2015 %C A004825 Deshouillers, Hennecart, & Landreau conjecture that this sequence has density 0.0999425... = lim_K Sum_{k=1..K} exp(c*rho(k,K)/K^2)/K where c = -gamma(4/3)^3/6 = -0.1186788..., K takes increasing values in A003418 (or, equivalently, A051451), and rho(k0,K) is the number of triples 1 <= k1,k2,k3 <= K such that k0 = k1^3 + k2^3 + k3^3 mod K. - _Charles R Greathouse IV_, Sep 16 2016 %H A004825 Alois P. Heinz, <a href="/A004825/b004825.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe) %H A004825 Jean-Marc Deshouillers, François Hennecart, and Bernard Landreau, <a href="http://link.springer.com/chapter/10.1007/11792086_11">On the density of sums of three cubes</a>, ANTS-VII (2006), pp. 141-155. %H A004825 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a> %p A004825 isA004825 := proc(n) %p A004825 local x,y,zc ; %p A004825 for x from 0 do %p A004825 if 3*x^3 > n then %p A004825 return false; %p A004825 end if; %p A004825 for y from x do %p A004825 if x^3+2*y^3 > n then %p A004825 break; %p A004825 else %p A004825 zc := n-x^3-y^3 ; %p A004825 if zc >= y^3 and isA000578(zc) then %p A004825 return true; %p A004825 end if; %p A004825 end if; %p A004825 end do: %p A004825 end do: %p A004825 end proc: %p A004825 A004825 := proc(n) %p A004825 option remember; %p A004825 local a; %p A004825 if n = 1 then %p A004825 0; %p A004825 else %p A004825 for a from procname(n-1)+1 do %p A004825 if isA004825(a) then %p A004825 return a; %p A004825 end if; %p A004825 end do: %p A004825 end if; %p A004825 end proc: %p A004825 seq(A004825(n),n=1..100) ; # _R. J. Mathar_, Sep 09 2015 %p A004825 # second Maple program: %p A004825 b:= proc(n, i, t) option remember; n=0 or i>0 and t>0 %p A004825 and (b(n, i-1, t) or i^3<=n and b(n-i^3, i, t-1)) %p A004825 end: %p A004825 a:= proc(n) option remember; local k; %p A004825 for k from 1+ `if`(n=1, -1, a(n-1)) %p A004825 while not b(k, iroot(k, 3), 3) do od; k %p A004825 end: %p A004825 seq(a(n), n=1..100); # _Alois P. Heinz_, Sep 16 2016 %t A004825 q=7; imax=q^3; Select[Union[Flatten[Table[x^3+y^3+z^3, {x,0,q}, {y,x,q}, {z,y,q}]]], #<=imax&] (* _Vladimir Joseph Stephan Orlovsky_, Apr 20 2011 *) %o A004825 (PARI) list(lim)=my(v=List(),k,t); for(x=0,sqrtnint(lim\=1,3), for(y=0, min(sqrtnint(lim-x^3,3),x), k=x^3+y^3; for(z=0,min(sqrtnint(lim-k,3), y), listput(v, k+z^3)))); Set(v) \\ _Charles R Greathouse IV_, Sep 14 2015 %Y A004825 A003072 is a subsequence. %Y A004825 Cf. A004999. %Y A004825 Column k=3 of A336820. %K A004825 nonn %O A004825 1,3 %A A004825 _N. J. A. Sloane_