This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004935 #21 Sep 13 2023 02:13:39 %S A004935 0,15126,30253,45380,60507,75634,90761,105888,121015,136142,151269, %T A004935 166396,181523,196650,211777,226904,242031,257158,272285,287412, %U A004935 302539,317666,332793,347920,363047,378174 %N A004935 a(n) = floor(n*phi^20), where phi is the golden ratio, A001622. %C A004935 From _Joerg Arndt_, Sep 12 2023: (Start) %C A004935 phi^20 = 15126.999933893... is a near integer. %C A004935 Therefore the (incorrect!) g.f. 1 + (-1 + 15128*x)/(1-x)^2 produces the initial about 15000 terms of this sequence. %C A004935 (End) %H A004935 G. C. Greubel, <a href="/A004935/b004935.txt">Table of n, a(n) for n = 0..10000</a> %H A004935 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %t A004935 With[{c=GoldenRatio^20},Floor[c Range[0,30]]] (* _Harvey P. Dale_, Feb 18 2013 *) %o A004935 (Magma) [Floor((15127+6765*Sqrt(5))*n/2): n in [0..60]]; // _G. C. Greubel_, Sep 12 2023 %o A004935 (SageMath) [floor(golden_ratio^(20)*n) for n in range(61)] # _G. C. Greubel_, Sep 12 2023 %Y A004935 Cf. A004919, A004920, A004921, A004922, A004923, A004924, A004925. %Y A004935 Cf. A004926, A004927, A004928, A004929, A004930, A004931, A004932. %Y A004935 Cf. A004933, A004934, A004976, A066096, A090909. %Y A004935 Cf. A001622. %K A004935 nonn,easy %O A004935 0,2 %A A004935 _N. J. A. Sloane_