cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005003 Number of rhyme schemes (see reference for precise definition).

Original entry on oeis.org

1, 7, 35, 156, 670, 2886, 12797, 59537, 294585, 1562324, 8900568, 54346140, 353937741, 2444771767, 17814457447, 136308242144, 1091001532590, 9105746802826, 79041398643849, 711994012088297, 6642697774712213
Offset: 1

Views

Author

Keywords

References

  • J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    (Maple program from R. J. Mathar):
    A000110 := proc(n) combinat[bell](n) ; end:
    A102661 := proc(n,k) add(combinat[stirling2](n,i),i=1..k) ; end:
    A005001:=n->if n = 0 then 0; else add(combinat[bell](k),k=0..n); fi;
    beta := proc(n,k) if k= 1 then A005001(n) ; elif k= n then 1 ; else k*beta(n-1,k)+A000110(n-1)-A102661(n-1,k-2) ; fi ; end:
    A005003 := proc(n) beta(n,3) ; end:
    seq(A005003(n),n=3..30) ;
  • Mathematica
    a[1] = 1; a[n_] := 3*a[n-1] + BellB[n+1] - StirlingS2[n+1, 1]; a /@ Range[21] (* Jean-François Alcover, May 20 2011, after R. J. Mathar *)

Formula

a(k)=1. a(n)=k*a(n-1)+A000110(n-1)-A102661(n-1,k-2), k=3. - R. J. Mathar, Jul 15 2008

Extensions

More terms from R. J. Mathar, Jul 15 2008

A127021 Number of rhyme schemes (see reference for precise definition).

Original entry on oeis.org

1, 11, 80, 491, 2777, 15120, 81371, 440947, 2441334, 13976885, 83547881, 525082654, 3483272777, 24413200487, 180517606216, 1404147099951, 11449330342717, 97521479081952, 864955731435983, 7966538662094103
Offset: 4

Views

Author

R. J. Mathar, Jul 15 2008

Keywords

References

  • J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.

Crossrefs

Formula

a(k)=1. a(n)=k*a(n-1)+A000110(n-1)-A102661(n-1,k-2), k=4.
Showing 1-2 of 2 results.