This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005015 #46 Aug 16 2024 19:03:34 %S A005015 11,22,44,88,176,352,704,1408,2816,5632,11264,22528,45056,90112, %T A005015 180224,360448,720896,1441792,2883584,5767168,11534336,23068672, %U A005015 46137344,92274688,184549376,369098752,738197504,1476395008,2952790016,5905580032,11811160064 %N A005015 a(n) = 11*2^n. %C A005015 The first differences are the sequence itself. - _Alexandre Wajnberg_ & _Eric Angelini_, Sep 07 2005 %C A005015 11 times powers of 2. - _Omar E. Pol_, Dec 16 2008 %C A005015 A144472 = -1,2,9,13,31,57,.... a(n) = A144472(n+1)+A144472(n+2). Also a(n) = A144472(n+3)-A144472(n+1). A144472(n+1) is a Jacobsthal sequence from 2 and 9: A144472(n+3) = A144472(n+2)+2*A144472(n+1). Note a(n) mod 9 = period 6: repeat 2,4,8,7,5,1 = A153130(n+1). - _Paul Curtz_, Jan 06 2009 %H A005015 Vincenzo Librandi, <a href="/A005015/b005015.txt">Table of n, a(n) for n = 0..1000</a> %H A005015 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A005015 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2). %F A005015 G.f.: 11/(1-2*x). %F A005015 a(n) = 2*a(n-1), n>0; a(0)=11. - _Philippe Deléham_, Nov 23 2008 %F A005015 a(n) = A000079(n)*11. - _Omar E. Pol_, Dec 16 2008 %F A005015 E.g.f.: 11*exp(2*x). - _Elmo R. Oliveira_, Aug 16 2024 %t A005015 11*2^Range[0, 60] (* _Vladimir Joseph Stephan Orlovsky_, Jun 09 2011 *) %t A005015 NestList[2#&,11,30] (* _Harvey P. Dale_, Jun 11 2021 *) %o A005015 (Magma) [11*2^n: n in [0..40]]; // _Vincenzo Librandi_, Aug 14 2011 %o A005015 (PARI) a(n)=11<<n \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A005015 Row sums of (10, 1)-Pascal triangle A093645. %Y A005015 Cf. A000079, A144472, A153130. %K A005015 nonn,easy %O A005015 0,1 %A A005015 _N. J. A. Sloane_