This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005017 #26 Feb 16 2025 08:32:28 %S A005017 1,1,1,36,144,400,3600,2822400,16257024,32920473600,823011840000, %T A005017 8129341440000,292656291840000,3877578804363264,58642395498086400, %U A005017 844450495172444160000,54044831691036426240000,1161740555606493757440000,76817130615613056614400 %N A005017 Denominator of (binomial(2*n-2,n-1)/n!)^2. %H A005017 G. C. Greubel, <a href="/A005017/b005017.txt">Table of n, a(n) for n = 1..270</a> %H A005017 Pavel Valtr, <a href="https://doi.org/10.1007/BF01271274">The probability that n random points in a triangle are in convex position</a>, Combinatorica 16 (1996), no. 4, 567-573. %H A005017 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SylvestersFour-PointProblem.html">Sylvester's Four-Point Problem.</a> %F A005017 a(n) = denominator( (A000108(n-1)/(n-1)!)^2 ). - _G. C. Greubel_, Sep 12 2023 %t A005017 Denominator[Table[(Binomial[2n-2,n-1]/n!)^2,{n,20}]] (* _Harvey P. Dale_, May 30 2012 *) %o A005017 (PARI) a(n) = denominator((binomial(2*n-2,n-1)/n!)^2); \\ _Michel Marcus_, Jul 14 2022 %o A005017 (Magma) [Denominator((Catalan(n-1)/Factorial(n-1))^2): n in [1..40]]; // _G. C. Greubel_, Sep 12 2023 %o A005017 (SageMath) [denominator((catalan_number(n-1)/factorial(n-1))^2) for n in range(1,41)] # _G. C. Greubel_, Sep 12 2023 %Y A005017 Cf. A000108, A004936 (numerators). %K A005017 nonn,frac %O A005017 1,4 %A A005017 _N. J. A. Sloane_