This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005037 M4236 #28 Aug 20 2019 03:19:18 %S A005037 1,1,6,40,285,2126,16380,129456,1043460,8544965,70893054,594610536, %T A005037 5033644070,42952562100,369061673400,3190379997272,27727712947836, %U A005037 242135589539124,2123541227823800,18695484623015200,165169213716082765 %N A005037 Number of nonequivalent dissections of a polygon into n pentagons by nonintersecting diagonals rooted at a cell up to rotation. %D A005037 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005037 Andrew Howroyd, <a href="/A005037/b005037.txt">Table of n, a(n) for n = 1..200</a> %H A005037 F. Harary, E. M. Palmer, R. C. Read, <a href="/A000108/a000108_20.pdf">On the cell-growth problem for arbitrary polygons, computer printout, circa 1974</a> %H A005037 F. Harary, E. M. Palmer and R. C. Read, <a href="http://dx.doi.org/10.1016/0012-365X(75)90041-2">On the cell-growth problem for arbitrary polygons</a>, Discr. Math. 11 (1975), 371-389. %t A005037 u[n_, k_, r_] := r*Binomial[(k-1)*n + r, n]/((k-1)*n + r); %t A005037 T[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#]&]/k; %t A005037 a[n_] := T[n, 5]; %t A005037 Array[a, 21] (* _Jean-François Alcover_, Aug 20 2019, after _Andrew Howroyd_ *) %Y A005037 Column k=5 of A295222. %K A005037 nonn %O A005037 1,3 %A A005037 _N. J. A. Sloane_ %E A005037 More terms from _Sean A. Irvine_, Mar 11 2016 %E A005037 Name edited by _Andrew Howroyd_, Nov 20 2017