cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005071 Sum of squares of primes = 1 mod 3 dividing n.

This page as a plain text file.
%I A005071 #19 Jun 21 2022 05:08:58
%S A005071 0,0,0,0,0,0,49,0,0,0,0,0,169,49,0,0,0,0,361,0,49,0,0,0,0,169,0,49,0,
%T A005071 0,961,0,0,0,49,0,1369,361,169,0,0,49,1849,0,0,0,0,0,49,0,0,169,0,0,0,
%U A005071 49,361,0,0,0,3721,961,49,0,169,0,4489,0,0,49,0,0,5329,1369,0,361,49,169,6241,0,0,0,0,49,0,1849,0,0,0,0,218
%N A005071 Sum of squares of primes = 1 mod 3 dividing n.
%H A005071 Antti Karttunen, <a href="/A005071/b005071.txt">Table of n, a(n) for n = 1..10001</a>
%F A005071 Additive with a(p^e) = p^2 if p = 1 (mod 3), 0 otherwise.
%t A005071 Module[{sp=Select[Prime[Range[100]],Mod[#,3]==1&]},Table[Total[ Select[ sp, Divisible[ n,#]&]^2],{n,70}]] (* _Harvey P. Dale_, Dec 19 2014 *)
%t A005071 f[p_, e_] := If[Mod[p, 3] == 1, p^2, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* _Amiram Eldar_, Jun 21 2022 *)
%o A005071 (Scheme) (define (A005071 n) (if (= 1 n) 0 (+ (A000290 (if (= 1 (modulo (A020639 n) 3)) (A020639 n) 0)) (A005071 (A028234 n))))) ;; _Antti Karttunen_, Jul 09 2017
%Y A005071 Cf. A000290, A005070, A005072, A005073.
%K A005071 nonn
%O A005071 1,7
%A A005071 _N. J. A. Sloane_
%E A005071 More terms from _Antti Karttunen_, Jul 09 2017