This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005076 #19 Jun 21 2022 05:09:27 %S A005076 0,8,0,8,125,8,0,8,0,133,1331,8,0,8,125,8,4913,8,0,133,0,1339,12167,8, %T A005076 125,8,0,8,24389,133,0,8,1331,4921,125,8,0,8,0,133,68921,8,0,1339,125, %U A005076 12175,103823,8,0,133,4913,8,148877,8,1456,8,0,24397,205379,133,0,8,0,8,125,1339,0,4921,12167,133,357911 %N A005076 Sum of cubes of primes = 2 mod 3 dividing n. %H A005076 Antti Karttunen, <a href="/A005076/b005076.txt">Table of n, a(n) for n = 1..10000</a> %F A005076 Additive with a(p^e) = p^3 if p = 2 (mod 3), 0 otherwise. %F A005076 a(n) = A005064(n) - A005072(n) - 27*A079978(n). - _Antti Karttunen_, Jul 10 2017 %t A005076 Array[DivisorSum[#, #^3 &, And[PrimeQ@ #, Mod[#, 3] == 2] &] &, 71] (* _Michael De Vlieger_, Jul 11 2017 *) %t A005076 f[p_, e_] := If[Mod[p, 3] == 2, p^3, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* _Amiram Eldar_, Jun 21 2022 *) %o A005076 (Scheme) (define (A005076 n) (if (= 1 n) 0 (+ (A000578 (if (= 2 (modulo (A020639 n) 3)) (A020639 n) 0)) (A005076 (A028234 n))))) ;; _Antti Karttunen_, Jul 10 2017 %o A005076 (PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%3) == 2, p^3)); \\ _Michel Marcus_, Jul 11 2017 %Y A005076 Cf. A000578, A005064, A005072, A005074, A005075, A005077, A008472, A079978. %K A005076 nonn %O A005076 1,2 %A A005076 _N. J. A. Sloane_ %E A005076 More terms from _Antti Karttunen_, Jul 10 2017