This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005089 #32 Jan 27 2025 04:55:18 %S A005089 0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,1,0,0,1,0,0,0,0,1,1,0,0,1,1,0,0,0,1, %T A005089 1,0,1,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,1,0,1,0,0,1,0,1,1,0,0,0,2,0,0,1, %U A005089 0,1,0,0,1,1,1,0,0,1,0,1,0,1,0,0,2,0,1,0,1,1,1,0,0,0,1,0,1,0,0,1,1,1 %N A005089 Number of distinct primes == 1 (mod 4) dividing n. %H A005089 Reinhard Zumkeller, <a href="/A005089/b005089.txt">Table of n, a(n) for n = 1..10000</a> %H A005089 Étienne Fouvry and Peter Koymans, <a href="https://arxiv.org/abs/2001.05350">On Dirichlet biquadratic fields</a>, arXiv:2001.05350 [math.NT], 2020. %F A005089 Additive with a(p^e) = 1 if p == 1 (mod 4), 0 otherwise. %F A005089 From _Reinhard Zumkeller_, Jan 07 2013: (Start) %F A005089 a(n) = Sum_{k=1..A001221(n)} A079260(A027748(n,k)). %F A005089 a(A004144(n)) = 0. %F A005089 a(A009003(n)) > 0. (End) %p A005089 A005089 := proc(n) %p A005089 local a,pe; %p A005089 a := 0 ; %p A005089 for pe in ifactors(n)[2] do %p A005089 if modp(op(1,pe),4) =1 then %p A005089 a := a+1 ; %p A005089 end if; %p A005089 end do: %p A005089 a ; %p A005089 end proc: %p A005089 seq(A005089(n),n=1..100) ; # _R. J. Mathar_, Jul 22 2021 %t A005089 f[n_]:=Length@Select[If[n==1,{},FactorInteger[n]],Mod[#[[1]],4]==1&]; Table[f[n],{n,102}] (* _Ray Chandler_, Dec 18 2011 *) %t A005089 a[n_] := DivisorSum[n, Boole[PrimeQ[#] && Mod[#, 4] == 1]&]; Array[a, 100] (* _Jean-François Alcover_, Dec 01 2015 *) %o A005089 (PARI) for(n=1,100,print1(sumdiv(n,d,isprime(d)*if((d-1)%4,0,1)),",")) %o A005089 (Haskell) %o A005089 a005089 = sum . map a079260 . a027748_row %o A005089 -- _Reinhard Zumkeller_, Jan 07 2013 %o A005089 (Magma) [#[p:p in PrimeDivisors(n)|p mod 4 eq 1]: n in [1..100]]; // _Marius A. Burtea_, Jan 16 2020 %Y A005089 Cf. A001221, A005091, A005094, A083025 (with multiplicity). %Y A005089 Cf. A079260, A027748, A004144, A009003. %K A005089 nonn %O A005089 1,65 %A A005089 _N. J. A. Sloane_