cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005146 Numerators of numbers occurring in continued fraction connected with expansion of gamma function.

This page as a plain text file.
%I A005146 M5308 #33 May 08 2018 15:11:54
%S A005146 1,1,53,195,22999,29944523,109535241009,29404527905795295658,
%T A005146 455377030420113432210116914702,
%U A005146 26370812569397719001931992945645578779849,152537496709054809881638897472985990866753853122697839,100043420063777451042472529806266909090824649341814868347109676190691
%N A005146 Numerators of numbers occurring in continued fraction connected with expansion of gamma function.
%D A005146 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 258.
%D A005146 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A005146 H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 365.
%H A005146 Vincenzo Librandi, <a href="/A005146/b005146.txt">Table of n, a(n) for n = 0..30</a>
%H A005146 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A005146 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 258.
%H A005146 B. W. Char, <a href="http://www.jstor.org/stable/2006103">On Stieltjes' continued fraction for the gamma function</a>, Math. Comp., 34 (1980), 547-551.
%H A005146 Peter Luschny, <a href="/A005146/a005146.txt">Maple program for A005146/A005147</a>
%H A005146 Peter Luschny, <a href="http://www.luschny.de/math/factorial/approx/continuedfraction.html">Continued fraction</a>
%H A005146 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016).
%t A005146 len = 12; s[p_] := (-1)^p * BernoulliB[2p+2]/(2p+1)/(2p+2); Do[m[n, 1] = 0, {n, 0, len}]; Do[m[n, 2] = s[n+1]/s[n], {n, 0, len-1}]; Do[m[n, k] =
%t A005146 If[OddQ[k], m[n+1, k-2]+m[n+1, k-1]-m[n, k-1],
%t A005146 m[n+1, k-2]*m[n+1, k-1]/m[n, k-1]], {k, 3, len}, {n, 0,
%t A005146 len-k+1}]; Do[m[n, 1] = s[n], {n, 0, len}];
%t A005146 Table[m[0, k], {k, 1, len}] // Numerator
%t A005146 (* _Jean-François Alcover_, May 24 2011, after _Peter Luschny_ *)
%Y A005146 Cf. A005147.
%K A005146 nonn,frac,nice
%O A005146 0,3
%A A005146 _Simon Plouffe_ and _N. J. A. Sloane_
%E A005146 More terms from _Rainer Rosenthal_, Jan 11 2007