cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005147 Denominators of numbers occurring in continued fraction connected with expansion of gamma function.

This page as a plain text file.
%I A005147 M4831 #32 May 08 2018 15:11:54
%S A005147 12,30,210,371,22737,19733142,48264275462,9769214287853155785,
%T A005147 113084128923675014537885725485,
%U A005147 5271244267917980801966553649147604697542,24274291553105128438297398108902195365373879212227726,13346384670164266280033479022693768890138348905413621178450736182873
%N A005147 Denominators of numbers occurring in continued fraction connected with expansion of gamma function.
%D A005147 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 258.
%D A005147 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005147 Vincenzo Librandi, <a href="/A005147/b005147.txt">Table of n, a(n) for n = 0..30</a>
%H A005147 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H A005147 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 258.
%H A005147 B. W. Char, <a href="http://www.jstor.org/stable/2006103">On Stieltjes' continued fraction for the gamma function</a>, Math. Comp., 34 (1980), 547-551.
%H A005147 Peter Luschny, <a href="/A005146/a005146.txt">Maple program for A005146/A005147</a>
%H A005147 Peter Luschny, <a href="http://www.luschny.de/math/factorial/approx/continuedfraction.html">Continued fraction</a>
%H A005147 W. Wang, <a href="http://dx.doi.org/10.1016/j.jnt.2015.12.016">Unified approaches to the approximations of the gamma function</a>, J. Number Theory (2016).
%t A005147 len = 12; s[p_] := (-1)^p * BernoulliB[2p+2]/(2p+1)/(2p+2); Do[m[n, 1] = 0, {n, 0, len}]; Do[m[n, 2] = s[n+1]/s[n], {n, 0, len-1}]; Do[m[n, k] =
%t A005147 If[OddQ[k], m[n+1, k-2]+m[n+1, k-1]-m[n, k-1],
%t A005147 m[n+1, k-2]*m[n+1, k-1]/m[n, k-1]], {k, 3, len}, {n, 0,
%t A005147 len-k+1}]; Do[m[n, 1] = s[n], {n, 0, len}];
%t A005147 Table[m[0, k], {k, 1, len}] // Denominator
%t A005147 (* _Jean-François Alcover_, May 24 2011, after _Peter Luschny_ *)
%Y A005147 Cf. A005146.
%K A005147 nonn,frac,nice
%O A005147 0,1
%A A005147 _Simon Plouffe_ and _N. J. A. Sloane_
%E A005147 More terms from _Rainer Rosenthal_, Jan 11 2007