cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005157 Number of totally symmetric plane partitions that fit in an n X n X n box.

This page as a plain text file.
%I A005157 M1499 #103 Apr 20 2025 20:13:18
%S A005157 1,2,5,16,66,352,2431,21760,252586,3803648,74327145,1885102080,
%T A005157 62062015500,2652584509440,147198472495020,10606175914819584,
%U A005157 992340657705109416,120567366227960791040,19023173201224270401428,3897937005297330777227264
%N A005157 Number of totally symmetric plane partitions that fit in an n X n X n box.
%C A005157 Also, number of 2-dimensional shifted complexes on n+1 nodes. [Klivans]
%C A005157 Also the number of totally symmetric partitions which fit in an (n-1)-dimensional box with side length 4 (for n>0). - _Graham H. Hawkes_, Jan 11 2014
%C A005157 Suppose we index this sequence slightly differently. Let the elements of a partition be represented by points rather than boxes, as in a Ferrers diagram. In this case, a 1 X 1 X 1 (closed) box would fit 8 points -- one at each vertex of the box, and we use the convention that a 0 X 0 X 0 (closed) box contains exactly one point. Using this indexing, the sequence begins (offset is still 0) 2,5,16,... rather than 1,2,5,... If we use the same method of indexing for all other dimensions, then we have the following remarkable result: The number of totally symmetric partitions which fit inside a d-dimensional box with side length n is equal to the number of totally symmetric partitions which fit inside an n-dimensional box of side length d. - _Graham H. Hawkes_, Jan 11 2014
%C A005157 For two other contexts where this sequence arises, see the Knuth (2019) link (noncrossing paths among the 2(2^n-1) paths defined in that note; independent sets of paths among the first 2^n-1 of those). - _N. J. A. Sloane_, Feb 09 2019, based on email from _Don Knuth_.
%D A005157 D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.8), p. 198 (corrected).
%D A005157 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005157 Alois P. Heinz, <a href="/A005157/b005157.txt">Table of n, a(n) for n = 0..130</a> (first 51 terms from T. D. Noe)
%H A005157 Paul Barry, <a href="https://arxiv.org/abs/2104.01644">Centered polygon numbers, heptagons and nonagons, and the Robbins numbers</a>, arXiv:2104.01644 [math.CO], 2021.
%H A005157 R. K. Guy, <a href="/A005157/a005157_3.pdf">Letter to N. J. A. Sloane</a>, Dec 5 1988.
%H A005157 Graham H. Hawkes, <a href="/A005157/a005157_2.pdf">Totally symmetric partitions in boxes</a>
%H A005157 Seth Ireland, <a href="https://arxiv.org/abs/2302.02505">A bijection between strongly stable and totally symmetric partitions</a>, arXiv:2302.02505 [math.CO], 2023.
%H A005157 C. Klivans, <a href="http://www.dam.brown.edu/people/cklivans/obs_cjk.pdf">Obstructions to shiftedness</a>, preprint.
%H A005157 C. Klivans, <a href="http://dx.doi.org/10.1007/s00454-004-1103-9">Obstructions to shiftedness</a>, Discrete Comput. Geom., 33 (2005), 535-545.
%H A005157 Don Knuth, <a href="https://cs.stanford.edu/~knuth/papers/noncr-conj.pdf">A conjecture about noncrossing paths</a>, Feb 06 2019.
%H A005157 R. P. Stanley, <a href="http://dx.doi.org/10.1007/BFb0072521">A baker's dozen of conjectures concerning plane partitions</a>, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
%H A005157 R. P. Stanley, <a href="/A005130/a005130.pdf">A baker's dozen of conjectures concerning plane partitions</a>, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986. Preprint. [Annotated scanned copy]
%F A005157 a(n) = Product_{i=1..n} Product_{j=i..n} Product_{k=j..n} (i+j+k-1)/(i+j+k-2). - _Paul Barry_, May 13 2008
%F A005157 a(n) ~ exp(1/72) * GAMMA(1/3)^(2/3) * n^(7/72) * 3^(3*n*(n+1)/4 + 11/72) / (A^(1/6) * Pi^(1/3) * 2^(n*(2*n+1)/2 + 13/24)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Mar 01 2015
%F A005157 a(n) = sqrt(A323848(n+1,n)) for n >= 1. [proof by Nikolai Beluhov; see Knuth (2019) link] - _Alois P. Heinz_, Feb 10 2019
%F A005157 Apparently, a(n) = Sum_{k=0..n} A184173(n,k). - _Alois P. Heinz_, Feb 11 2019
%F A005157 Conjectures: if p == 1 (mod 6) is prime then a(p) == 2^((p+5)/6) (mod p^2); if p == 5 (mod 6) is prime then a(p) == 2^((p+1)/6) (mod p^2) (checked up to p = 1009). - _Peter Bala_, Feb 17 2023
%e A005157 a(2) = 5 because we have: void, 1, 21/1, 22/21, and 22/22.
%p A005157 A005157 := proc(n) local i,j; mul(mul((i+j+n-1)/(i+2*j-2),j=i..n),i=1..n); end;
%t A005157 Table[Product[(i+j+k-1)/(i+j+k-2),{i,n},{j,i,n},{k,j,n}],{n,0,20}] (* _Harvey P. Dale_, Jul 17 2011 *)
%o A005157 (PARI) A005157(n)=prod(i=1,n,prod(j=i,n,(i+j+n-1)/(i+2*j-2))) \\ _M. F. Hasler_, Sep 26 2018
%Y A005157 Cf. A049505, A184173, A323848.
%Y A005157 Row sums of A214564.
%K A005157 nonn,nice,easy
%O A005157 0,2
%A A005157 _N. J. A. Sloane_