This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005168 M0380 #50 Oct 27 2023 19:38:39 %S A005168 1,1,1,2,2,9,-6,118,-568,4716,-38160,358126,-3662088,41073096, %T A005168 -500013528,6573808200,-92840971200,1402148010528,-22554146644416, %U A005168 385014881294496,-6952611764874240,132427188835260480,-2653529921603890560,55802195178451990896 %N A005168 n-th derivative of x^x at 1, divided by n. %D A005168 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005168 Alois P. Heinz, <a href="/A005168/b005168.txt">Table of n, a(n) for n = 1..400</a> (first 100 terms from T. D. Noe) %H A005168 R. K. Guy, <a href="/A005727/a005727.pdf">Letter to N. J. A. Sloane, 1986</a> %H A005168 R. K. Guy, <a href="http://www.jstor.org/stable/2322249">The strong law of small numbers</a>. Amer. Math. Monthly 95 (1988), no. 8, 697-712. %H A005168 R. K. Guy, <a href="/A005165/a005165.pdf">The strong law of small numbers</a>. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy] %H A005168 R. R. Patterson and G. Suri, <a href="/A005168/a005168.pdf">The derivatives of x^x</a>, date unknown. Preprint. [Annotated scanned copy] %p A005168 a:= n-> (n-1)! *coeftayl(x^x, x=1, n): %p A005168 seq(a(n), n=1..30); # _Alois P. Heinz_, Aug 18 2012 %t A005168 Rest[(NestList[ Factor[ D[ #1, x]] &, x^x, 23] /. (x -> 1))/Range[0, 23]] (* _Robert G. Wilson v_, Aug 10 2010 *) %o A005168 (Python) %o A005168 from sympy import var, diff %o A005168 x = var('x') %o A005168 y = x**x %o A005168 l = [[y:=diff(y),y.subs(x,1)/(n+1)][1] for n in range(10)] %o A005168 print(l) # _Nicholas Stefan Georgescu_, Mar 02 2023 %Y A005168 Cf. A005727. %Y A005168 Column k=2 of A295027 (for n>1), A295028. %K A005168 sign,easy,nice %O A005168 1,4 %A A005168 _N. J. A. Sloane_, _R. K. Guy_ %E A005168 One more term from _Robert G. Wilson v_, Aug 10 2010