This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005181 M0693 #52 Feb 16 2025 08:32:28 %S A005181 1,1,2,3,5,8,13,21,34,55,91,149,245,404,666,1097,1809,2981,4915,8104, %T A005181 13360,22027,36316,59875,98716,162755,268338,442414,729417,1202605, %U A005181 1982760,3269018,5389699,8886111,14650720,24154953,39824785,65659970,108254988,178482301 %N A005181 a(n) = ceiling(exp((n-1)/2)). %C A005181 This sequence illustrates the second law of small numbers because it is a coincidence that its first ten terms are the same as the first ten Fibonacci numbers (A000045). - _Alonso del Arte_, Mar 18 2013 %D A005181 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A005181 I. Stewart, L'univers des nombres, pp. 27 Belin-Pour La Science, Paris 2000. %H A005181 Vladimir Pletser, <a href="/A005181/b005181.txt">Table of n, a(n) for n = 0..1000</a> %H A005181 R. K. Guy, <a href="/A005347/a005347.pdf">The Second Strong Law of Small Numbers</a>, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy] %H A005181 R. K. Guy, <a href="http://www.jstor.org/stable/2691503">The Second Strong Law of Small Numbers</a>, Math. Mag, 63 (1990), no. 1, 3-20. %H A005181 R. K. Guy and N. J. A. Sloane, <a href="/A005180/a005180.pdf">Correspondence</a>, 1988. %H A005181 I. Stewart, <a href="http://www.whydomath.org/Reading_Room_Material/ian_stewart/9505.html">Fibonacci Forgeries</a> %H A005181 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number.</a> %H A005181 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StrongLawofSmallNumbers.html">Strong Law of Small Numbers.</a> %F A005181 Limit_{n->oo} a(n+1)/a(n) = sqrt(e) = 1.64872127... = A019774. - _Alois P. Heinz_, Feb 19 2019 %p A005181 seq(round(ceil(exp((n-1)/2))), n=0..50); # _Vladimir Pletser_, Sep 15 2013 %t A005181 Table[Ceiling[E^((n - 1)/2)], {n, 0, 39}] (* _Alonso del Arte_, Mar 18 2013 *) %o A005181 (Python) %o A005181 import math %o A005181 for n in range(99): %o A005181 print(str(int(math.ceil(math.e**((n-1)*0.5)))), end=', ') %o A005181 # _Alex Ratushnyak_, Mar 18 2013 %Y A005181 Cf. A000045, A019774. %K A005181 nonn %O A005181 0,3 %A A005181 _N. J. A. Sloane_, _R. K. Guy_ %E A005181 A few more terms from _Alonso del Arte_, Mar 18 2013