A005199 a(n) = Sum_t t*F(n,t), where F(n,t) is the number of forests with n (unlabeled) nodes and exactly t trees, all of which are planted (that is, rooted trees in which the root has degree 1).
0, 1, 1, 4, 6, 18, 35, 93, 214, 549, 1362, 3534, 9102, 23951, 63192, 168561, 451764, 1219290, 3305783, 9008027, 24643538, 67681372, 186504925, 515566016, 1429246490, 3972598378, 11068477743, 30908170493, 86488245455, 242481159915, 681048784377, 1916051725977, 5399062619966
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Washington Bomfim, Table of n, a(n) for n = 1..120
- E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
Programs
-
PARI
g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1; for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1])); f[m+1] }; global(max_n = 130); A000081 = vector(max_n, n, g(n-1)); F(n,t)={my(s=0, D, c, P_1); forpart(P_1 = n, D = Set(P_1); c = vector(#D); for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1))); s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k]) ) ,[2,n],[t,t]); s}; seq(n) = sum(t=1,n\2, t*F(n,t) ); \\ Washington Bomfim, Jul 08 2020
Formula
a(n) = Sum_{t=1, floor(n/2)}( t*F(n,t) ), where F(n,t) = Sum_{P_1(n,t)} (Product_{k=2..n} binomial(A000081(k-1) + c_k - 1, c_k)), where P_1(n, t) is the set of the partitions of n with t parts greater than one: 2*c_2 + ... + n*c_n = n; c_2, ..., c_n >= 0. - Washington Bomfim, Jul 08 2020
Extensions
Definition clarified by N. J. A. Sloane, May 29 2012
Comments