cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005202 Total number of fixed points in planted trees with n nodes.

Original entry on oeis.org

0, 1, 0, 1, 1, 4, 6, 14, 28, 60, 125, 263, 558, 1181, 2513, 5339, 11392, 24290, 51926, 111017, 237757, 509404, 1092713, 2345256, 5038015, 10828720, 23291759, 50126055, 107939753, 232550011, 501270200, 1080996244, 2332221316, 5033764628, 10868950676, 23476998980, 50728408182, 109649040738, 237081174662, 512767906801, 1109354495908
Offset: 1

Views

Author

Keywords

Comments

From R. J. Mathar, Apr 13 2019: (Start)
The associated triangle H_{p,j}, p >= 1, 1 <= j <= p, a(n) = Sum_{j=1..p} j*H_{p,j}, row sums in A001678, starts:
1;
0, 0;
1, 0, 0;
1, 0, 0, 0;
1, 0, 1, 0, 0;
1, 1, 1, 0, 0, 0;
2, 2, 1, 0, 1, 0, 0;
1, 4, 2, 2, 1, 0, 0, 0;
3, 4, 4, 5, 2, 0, 1, 0, 0;
3, 7, 7, 9, 4, 4, 1, 0, 0, 0;
5, 9, 15, 14, 11, 9, 3, 0, 1, 0, 0;
4, 14, 23, 28, 25, 19, 7, 6, 1, 0, 0, 0;
11, 15, 39, 46, 55, 38, 24, 14, 5, 0, 1, 0, 0;
6, 32, 54, 86, 97, 86, 64, 36, 11, 9, 1, 0, 0, 0;
(End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005200.

Programs

  • Maple
    Hpj := proc(Hofxy,p,j)
        coeftayl(Hofxy,x=0,p) ;
        coeftayl(%,y=0,j) ;
        simplify(%) ;
    end proc:
    Hxy := proc(x,y,pmax,hxyinit)
        if pmax = 0 then
            x*y ;
        else
            pp := 1;
            for p from 1 to pmax do
                t :=1 ;
                for j from 1 to p do
                    t := t*(1+x^p*y^j+add(x^(k*p),k=2..pmax+1))^Hpj(hxyinit,p,j) ;
                end do:
                pp := pp*t ;
            end do:
            x*y*%/(1+x*y) ;
        end if;
    end proc:
    hxy := Hxy(x,y,0,0) ;
    for pmax from 2 to 20 do
        Hxy(x,y,pmax,hxy) ;
        taylor(%,x=0,pmax+2) ;
        convert(%,polynom) ;
        taylor(%,y=0,pmax+2) ;
        hxy := convert(%,polynom) ;
        for p from 0 to pmax do
            Ap := 0 ;
            for j from 1 to p do
                Ap := Ap+j*Hpj(hxy,p,j) ;
            end do:
            printf("%d,",Ap) ;
        end do:
        print() ;
    end do: # R. J. Mathar, Apr 13 2019
  • Mathematica
    Hpj[Hofxy_, p_, j_] := SeriesCoefficient[SeriesCoefficient[Hofxy, {x, 0, p}] , {y, 0, j}];
    Hxy [x_, y_, pMax_, hxyinit_] := If [pMax == 0, x y, pp = 1; For[p = 1, p <= pMax, p++, t = 1; For[j = 1, j <= p, j++, t = t(1 + x^p y^j + Sum[x^(k*p), {k, 2, pMax + 1}])^Hpj[hxyinit, p, j]]; pp = pp t]; x*y* pp/(1 + x y)];
    hxy = Hxy[x, y, 0, 0];
    Reap[For[pMax = 2, pMax <= terms - 1, pMax++, Print["pMax = ", pMax]; sx = Series[Hxy[x, y, pMax, hxy], {x, 0, pMax + 2}] // Normal; sy = Series[sx, {y, 0, pMax + 2}]; hxy = sy // Normal; For[p = 0, p <= pMax, p++, Ap = 0; For[j = 1, j <= p, j++, Ap = Ap + j Hpj[hxy, p, j]]; If[pMax == terms - 1, Print[Ap]; Sow[Ap]]]]][[2, 1]] (* Jean-François Alcover, Mar 22 2020, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, Apr 13 2019