cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005217 Number of unlabeled unit interval graphs with n nodes.

Original entry on oeis.org

1, 2, 4, 9, 21, 55, 151, 447, 1389, 4502, 15046, 51505, 179463, 634086, 2265014, 8163125, 29637903, 108282989, 397761507, 1468063369, 5441174511, 20242989728, 75566702558, 282959337159, 1062523000005, 4000108867555, 15095081362907, 57088782570433
Offset: 1

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.7.
  • R. W. Robinson, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1980.

Programs

  • Mathematica
    m = 30;
    A[x_] = (-1 + Exp[Sum[psi[x^k]/k, {k, 1, m}]] /. psi[x_] -> (1 + 2 x - Sqrt[1 - 4 x] Sqrt[1 - 4 x^2])/(4 Sqrt[1 - 4 x^2])) + O[x]^m;
    CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Oct 24 2019 *)

Formula

G.f. A(x) = x + 2x^2 + 4x^3 + 9x^4 + 21x^5 + ... satisfies 1 + A(x) = exp( Sum_{k >= 1} psi(x^k)/k ), where psi(x) = (1+2*x-sqrt(1-4*x)*sqrt(1-4*x^2))/(4*sqrt(1-4*x^2)) is the g.f. for A007123.
For asymptotics, see for example Finch.