This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005271 M1955 #67 Feb 16 2025 08:32:28 %S A005271 1,2,9,272,589185,16332454526976,391689748492473664721077609089 %N A005271 Number of perfect matchings in n-cube. %C A005271 The matchings contain 2^n / 2 = 2^(n-1) edges. %C A005271 a(6) was first found by D. H. Wiedemann, unpublished (see Clark et al., Skupien). %C A005271 Also the number of minimum edge covers and minimum clique coverings in the n-hypercube graph. - _Eric W. Weisstein_, Dec 24 2017 %D A005271 L. H. Clark, J. C. George and T. D. Porter, On the number of 1-factors in the n-cube, Congress. Numer., 127 (1997), 67-69. %D A005271 J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 18). %D A005271 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005271 M. K. Chari and M. Joswig, <a href="http://dx.doi.org/10.1016/j.disc.2004.07.027">Complexes of discrete Morse functions</a>, Disc. Math. 302 (2005), 39-51. %H A005271 D. Deford, <a href="https://doi.org/10.2140/involve.2014.7.787">Seating rearrangements on arbitrary graphs</a>, Involve 7(6): 787-805 (2014); See Table 3. %H A005271 N. Graham and F. Harary, <a href="https://doi.org/10.1016/0893-9659(88)90173-5">The number of perfect matchings in a hypercube</a>, Appl. Math. Lett., 1 (1988), 45-48. %H A005271 N. Graham and F. Harary, <a href="/A005271/a005271.pdf">The number of perfect matchings in a hypercube</a>, Appl. Math. Lett. 1.1 (1988), 45-48. (Annotated scanned copy) %H A005271 Per Hakan Lundow, <a href="http://www.theophys.kth.se/~phl/Text/1factors.pdf">Computation of matching polynomials and the number of 1-factors in polygraphs</a>, Research report, No 12, 1996, Department of Math., Umea University, Sweden. %H A005271 Patric R. J. Östergård and V. H. Pettersson, <a href="https://doi.org/10.1007/s11083-012-9279-8">Enumerating Perfect Matchings in n-Cubes</a>, Order, November 2013, Volume 30, Issue 3, pp 821-835. %H A005271 Ville Pettersson, <a href="https://aaltodoc.aalto.fi/bitstream/handle/123456789/17688/isbn9789526063652.pdf?sequence=1">Graph Algorithms for Constructing and Enumerating Cycles and Related Structures</a>, Preprint 2015. %H A005271 J. Propp, <a href="https://arxiv.org/abs/math/9801061">Twenty open problems in enumeration of matchings</a>, arXiv:math/9801061 [math.CO], 1998-1999. %H A005271 J. Propp, <a href="http://faculty.uml.edu/jpropp/update.pdf">Updated article</a> %H A005271 J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), <a href="http://www.msri.org/publications/books/Book38/contents.html">New Perspectives in Algebraic Combinatorics</a> %H A005271 H. Sachs and B. Alspach, <a href="https://doi.org/10.1016/S0012-365X(98)90041-3">Problem 298: How many perfect matchings does the graph of the n-cube have?</a>, Discrete Math., 191 (1998), 251-252. [From _N. J. A. Sloane_, Feb 18 2012] %H A005271 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HypercubeGraph.html">Hypercube Graph</a> %H A005271 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Matching.html">Matching</a> %H A005271 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximumIndependentEdgeSet.html">Maximum Independent Edge Set</a> %H A005271 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimumCliqueCovering.html">Minimum Clique Covering</a> %H A005271 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimumEdgeCover.html">Minimum Edge Cover</a> %H A005271 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectMatching.html">Perfect Matching</a> %e A005271 G.f. = x + 2*x^2 + 9*x^3 + 272*x^4 + 589185*x^5 + 16332454526976*x^6 + ... %Y A005271 Cf. A220904, A112311. %Y A005271 For all matchings see A045310. %K A005271 nonn,hard,more,nice %O A005271 1,2 %A A005271 _N. J. A. Sloane_ %E A005271 a(6) from _Per H. Lundow_, Jul 15 1996 %E A005271 a(7) from _N. J. A. Sloane_, Jan 01 2013