This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005276 M5291 #56 Feb 16 2025 08:32:28 %S A005276 48,75,140,195,1050,1575,1648,1925,2024,2295,5775,6128,8892,9504, %T A005276 16587,20735,62744,75495,186615,196664,199760,206504,219975,266000, %U A005276 309135,312620,507759,526575,544784,549219,573560,587460,817479,1000824,1057595,1081184 %N A005276 Betrothed (or quasi-amicable) numbers. %C A005276 Members of a pair (m,n) such that sigma(m) = sigma(n) = m+n+1, where sigma = A000203. - _M. F. Hasler_, Nov 04 2008 %C A005276 Also members of a pair (m,k) such that m = sum of nontrivial divisors of k and k = sum of nontrivial divisors of m. - _Juri-Stepan Gerasimov_, Sep 11 2009 %C A005276 Also numbers that are terms of cycles when iterating Chowla's function A048050. - _Reinhard Zumkeller_, Feb 09 2013 %C A005276 From _Amiram Eldar_, Mar 09 2024: (Start) %C A005276 The first pair, (48, 75), was found by Nasir (1946). %C A005276 Lehmer (1948) in a review of Nasir's paper, noted that "the pair (48, 75) behave like amicable numbers". %C A005276 Makowski (1960) found the next 2 pairs, and called them "pairs of almost amicable numbers". %C A005276 The next 6 pairs were found by independently by Garcia (1968), who named them "números casi amigos" and Lal and Forbes (1971), who named them "reduced amicable pairs". %C A005276 Beck and Wajar (1971) found 6 more pairs, but missed the 15th and 16th pairs, (526575, 544784) and (573560, 817479). %C A005276 Hagis and Lord (1977) found the first 46 pairs. They called them "quasi-amicable numbers", after Garcia (1968). %C A005276 Beck and Wajar (1993) found the next 33 pairs. %C A005276 According to Guy (2004; 1st ed., 1981), the name "betrothed numbers" was proposed by Rufus Isaacs. (End) %D A005276 Mariano Garcia, Números Casi Amigos y Casi Sociables, Revista Annal, año 1, October 1968, Asociación Puertorriqueña de Maestros de Matemáticas. %D A005276 Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B5, pp. 91-92. %D A005276 D. H. Lehmer, Math. Rev., Vol. 8 (1948), p. 445. %D A005276 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005276 Giovanni Resta, <a href="/A005276/b005276.txt">Table of n, a(n) for n = 1..7819</a> (terms < 10^13, terms 1..100 from T. D. Noe, 101..1000 from Donovan Johnson) %H A005276 Walter E. Beck and Rudolph M. Wajar, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/15-4/beck1.pdf">More reduced amicable pairs</a>, Fibonacci Quarterly, Vol. 15, No. 4 (1977), pp. 331-332. %H A005276 Walter E. Beck and Rudolph M. Wajar, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/31-4/beck.pdf">Reduced and Augmented Amicable Pairs to 10^8</a>, Fibonacci Quarterly, Vol. 31, No. 4 (1993), pp. 295-298. %H A005276 Peter Hagis and Graham Lord, <a href="https://doi.org/10.1090/S0025-5718-1977-0434939-3">Quasi-amicable numbers</a>, Math. Comp. 31 (1977), 608-611. %H A005276 M. Lal and A. Forbes, <a href="http://dx.doi.org/10.1090/S0025-5718-1971-0297685-X">A note on Chowla's function</a>, Math. Comp., Vol. 25, No. 116 (1971), pp. 923-925. %H A005276 A. Makowski, <a href="https://www.jstor.org/stable/2310107">On Some Equations Involving Functions phi(n) and sigma(n)</a>, The American Mathematical Monthly, Vol. 67, No. 7 (1960), pp. 668-670. %H A005276 Abdur Rahman Nasir, <a href="https://archive.org/details/dli.calcutta.11605/page/140/mode/2up">On a certain arithmetic function</a>, Bull. Calcutta Math. Soc., Vol. 38 (1946), p. 140. %H A005276 Paul Pollack, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pollack/pollack3.html">Quasi-Amicable Numbers are Rare</a>, Journal of Integer Sequences, Vol. 14 (2011), Article 11.5.2. %H A005276 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QuasiamicablePair.html">Quasiamicable Pair.</a>. %H A005276 Wikipedia, <a href="https://en.wikipedia.org/wiki/Betrothed_numbers">Betrothed numbers</a>. %F A005276 Equals A003502 union A003503. - _M. F. Hasler_, Nov 04 2008 %t A005276 bnoQ[n_]:=Module[{dsn=DivisorSigma[1,n],m,dsm},m=dsn-n-1; dsm= DivisorSigma[ 1,m];dsm==dsn==n+m+1]; Select[Range[2,1100000],bnoQ] (* _Harvey P. Dale_, May 12 2012 *) %o A005276 (PARI) isA005276(n) = { local(s=sigma(n)); s>n+1 & sigma(s-n-1)==s } %o A005276 for( n=1, 10^6, isA005276(n) & print1(n",")) \\ _M. F. Hasler_, Nov 04 2008 %o A005276 (Haskell) %o A005276 a005276 n = a005276_list !! (n-1) %o A005276 a005276_list = filter p [1..] where %o A005276 p z = p' z [0, z] where %o A005276 p' x ts = if y `notElem` ts then p' y (y:ts) else y == z %o A005276 where y = a048050 x %o A005276 -- _Reinhard Zumkeller_, Feb 09 2013 %Y A005276 Cf. A003502, A003503, A048050, A328370. %Y A005276 Subsequence of A057533. %K A005276 nonn,nice %O A005276 1,1 %A A005276 _N. J. A. Sloane_ %E A005276 Extended by _T. D. Noe_, Dec 29 2011