This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005282 M1094 #111 Jul 04 2025 21:31:10 %S A005282 1,2,4,8,13,21,31,45,66,81,97,123,148,182,204,252,290,361,401,475,565, %T A005282 593,662,775,822,916,970,1016,1159,1312,1395,1523,1572,1821,1896,2029, %U A005282 2254,2379,2510,2780,2925,3155,3354,3591,3797,3998,4297,4433,4779,4851 %N A005282 Mian-Chowla sequence (a B_2 sequence): a(1) = 1; for n>1, a(n) = smallest number > a(n-1) such that the pairwise sums of elements are all distinct. %C A005282 An alternative definition is to start with 1 and then continue with the least number such that all pairwise differences of distinct elements are all distinct. - _Jens Voß_, Feb 04 2003. [However, compare A003022 and A227590. - _N. J. A. Sloane_, Apr 08 2016] %C A005282 Rachel Lewis points out [see link] that S, the sum of the reciprocals of this sequence, satisfies 2.158435 <= S <= 2.158677. Similarly, the sum of the squares of reciprocals of this sequence converges to approximately 1.33853369 and the sum of the cube of reciprocals of this sequence converges to approximately 1.14319352. - _Jonathan Vos Post_, Nov 21 2004; comment changed by _N. J. A. Sloane_, Jan 02 2020 %C A005282 Let S denote the reciprocal sum of a(n). Then 2.158452685 <= S <= 2.158532684. - _Raffaele Salvia_, Jul 19 2014 %C A005282 From _Thomas Ordowski_, Sep 19 2014: (Start) %C A005282 Known estimate: n^2/2 + O(n) < a(n) < n^3/6 + O(n^2). %C A005282 Conjecture: a(n) ~ n^3 / log(n)^2. (End) %D A005282 P. Erdős and R. Graham, Old and new problems and results in combinatorial number theory. Monographies de L'Enseignement Mathématique (1980). %D A005282 S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.20.2. %D A005282 R. K. Guy, Unsolved Problems in Number Theory, E28. %D A005282 A. M. Mian and S. D. Chowla, On the B_2-sequences of Sidon, Proc. Nat. Acad. Sci. India, A14 (1944), 3-4. %D A005282 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005282 T. D. Noe, <a href="/A005282/b005282.txt">Table of n, a(n) for n=1..5818</a> (terms less than 2*10^9) %H A005282 Thomas Bloom, <a href="https://www.erdosproblems.com/340">Problem 340</a>, Erdős Problems. %H A005282 Yin Choi Cheng, <a href="https://doi.org/10.1016/j.jnt.2024.07.010">Greedy Sidon sets for linear forms</a>, J. Num. Theor. (2024). %H A005282 Rachel Lewis, <a href="/A005282/a005282.pdf">Mian-Chowla and B2 sequences</a>, 1999. [Thanks to _Steven Finch_ for providing this document. Included with permission. - _N. J. A. Sloane_, Jan 02 2020] %H A005282 Kevin O'Bryant, <a href="https://arxiv.org/abs/2312.10910">B_h-Sets and Rigidity</a>, arXiv:2312.10910 [math.NT], 2023. %H A005282 Raffaele Salvia, <a href="/A005282/a005282.txt">Table of n, a(n) for n=1...25000</a> %H A005282 R. Salvia, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Salvia/salvia3.html">A New Lower Bound for the Distinct Distance Constant</a>, J. Int. Seq. 18 (2015) # 15.4.8. %H A005282 N. J. A. Sloane, <a href="/A001149/a001149.pdf">Handwritten notes on Self-Generating Sequences, 1970</a> (note that A1148 has now become A005282) %H A005282 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/B2-Sequence.html">B2 Sequence.</a> %H A005282 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Mian-ChowlaSequence.html">Chowla Sequence.</a> %H A005282 Zhang Zhen-Xiang, <a href="http://dx.doi.org/10.1090/S0025-5718-1993-1181334-7">A B_2-sequence with larger reciprocal sum</a>, Math. Comp. 60 (1993), 835-839. %H A005282 <a href="/index/Br#B_2">Index entries for B_2 sequences.</a> %F A005282 a(n) = A025582(n) + 1. %F A005282 a(n) = (A034757(n)+1)/2. %e A005282 The second term is 2 because the 3 pairwise sums 1+1=2, 1+2=3, 2+2=4 are all distinct. %e A005282 The third term cannot be 3 because 1+3 = 2+2. But it can be 4, since 1+4=5, 2+4=6, 4+4=8 are distinct and distinct from the earlier sums 1+1=2, 1+2=3, 2+2=4. %p A005282 a[1]:= 1: P:= {2}: A:= {1}: %p A005282 for n from 2 to 100 do %p A005282 for t from a[n-1]+1 do %p A005282 Pt:= map(`+`,A union {t},t); %p A005282 if Pt intersect P = {} then break fi %p A005282 od: %p A005282 a[n]:= t; %p A005282 A:= A union {t}; %p A005282 P:= P union Pt; %p A005282 od: %p A005282 seq(a[n],n=1..100); # _Robert Israel_, Sep 21 2014 %t A005282 t = {1}; sms = {2}; k = 1; Do[k++; While[Intersection[sms, k + t] != {}, k++]; sms = Join[sms, t + k, {2 k}]; AppendTo[t, k], {49}]; t (* _T. D. Noe_, Mar 02 2011 *) %o A005282 (Haskell) %o A005282 import Data.Set (Set, empty, insert, member) %o A005282 a005282 n = a005282_list !! (n-1) %o A005282 a005282_list = sMianChowla [] 1 empty where %o A005282 sMianChowla :: [Integer] -> Integer -> Set Integer -> [Integer] %o A005282 sMianChowla sums z s | s' == empty = sMianChowla sums (z+1) s %o A005282 | otherwise = z : sMianChowla (z:sums) (z+1) s %o A005282 where s' = try (z:sums) s %o A005282 try :: [Integer] -> Set Integer -> Set Integer %o A005282 try [] s = s %o A005282 try (x:sums) s | (z+x) `member` s = empty %o A005282 | otherwise = try sums $ insert (z+x) s %o A005282 -- _Reinhard Zumkeller_, Mar 02 2011 %o A005282 (PARI) A005282_vec(N, A=[1], U=[0], D(A, n=#A)=vector(n-1, k, A[n]-A[n-k]))={ while(#A<N, my(k=1); A=concat(A,A[#A]+U[1]); until(!setintersect(U,D(A)), A[#A]++); U=setunion(U,D(A)); while(k<#U && U[k++]<U[1]+k,); k>2 && U=U[k-1..-1]);A} \\ _M. F. Hasler_, Oct 09 2019 %o A005282 (PARI) aupto(L)= my(S=vector(L), A=[1]); for(i=2, L, for(j=1, #A, if(S[i-A[j]], next(2))); for(j=1, #A, S[i-A[j]]=1); A=concat(A, i)); A \\ _Ruud H.G. van Tol_, Jun 30 2025 %o A005282 (Python) %o A005282 from itertools import count, islice %o A005282 def A005282_gen(): # generator of terms %o A005282 aset1, aset2, alist = set(), set(), [] %o A005282 for k in count(1): %o A005282 bset2 = {k<<1} %o A005282 if (k<<1) not in aset2: %o A005282 for d in aset1: %o A005282 if (m:=d+k) in aset2: %o A005282 break %o A005282 bset2.add(m) %o A005282 else: %o A005282 yield k %o A005282 alist.append(k) %o A005282 aset1.add(k) %o A005282 aset2 |= bset2 %o A005282 A005282_list = list(islice(A005282_gen(),30)) # _Chai Wah Wu_, Sep 05 2023 %Y A005282 Row 2 of A347570. %Y A005282 Cf. A051788, A080200 (for differences between terms). %Y A005282 Different from A046185. Cf. A011185. %Y A005282 See also A003022, A227590. %Y A005282 A259964 has a greater sum of reciprocals. %Y A005282 Cf. A002858. %K A005282 nonn,nice %O A005282 1,2 %A A005282 _N. J. A. Sloane_ and _Simon Plouffe_ %E A005282 Examples added by _N. J. A. Sloane_, Jun 01 2008