This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005346 M2819 #70 Sep 05 2025 01:01:00 %S A005346 1,3,9,35,178,1132 %N A005346 Van der Waerden numbers W(2,n). %C A005346 a(6) = W(2,6) found by researcher in SAT techniques. - Jonathan Braunhut (jonbraunhut(AT)gmail.com), Jul 29 2007 %C A005346 Named after the Dutch mathematician Bartel Leendert van der Waerden (1903-1996). - _Amiram Eldar_, Jun 24 2021 %D A005346 Jacob E. Goodman and Joseph O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 159. %D A005346 M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 49. %D A005346 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005346 Thomas Bloom, <a href="https://www.erdosproblems.com/138">Problem 138</a>, Erdős Problems. %H A005346 Paul Erdős and Ronald L. Graham, <a href="http://dx.doi.org/10.5169/seals-50387">Old and New Problems and Results in Combinatorial Number Theory: van der Waerden's Theorem and Related Topics</a>, L'Enseignement Math., Geneva, 1979, p. 325. %H A005346 P. R. Herwig, M. J. H. Heule, P. M. van Lambalgen and H. van Maaren, <a href="https://doi.org/10.37236/925">A new method to construct lower bounds for Van de Waerden Numbers</a>, Elec. J. Combinat., Vol. 14, No. 1 (2007), #R6. %H A005346 Michal Kouril and Jerome L. Paul, <a href="https://projecteuclid.org/euclid.em/1227031896">The van der Waerden Number W(2,6) Is 1132</a>, Experimental Mathematics, Vol. 17, No. 1 (2008), pp. 53-61. %H A005346 Terence Tao, <a href="https://github.com/teorth/erdosproblems/blob/main/README.md#table">Erdős problem database</a>, see no. 138. %H A005346 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/vanderWaerdenNumber.html">van der Waerden Number</a>. %H A005346 Wikipedia, <a href="http://en.wikipedia.org/wiki/Van_der_Waerden_number">Van der Waerden number</a>. %Y A005346 Cf. A121894. %K A005346 nonn,hard,more,changed %O A005346 1,2 %A A005346 _N. J. A. Sloane_ %E A005346 a(6) from Jonathan Braunhut (jonbraunhut(AT)gmail.com), Jul 29 2007