This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005356 M2435 #30 Mar 09 2023 08:04:53 %S A005356 0,0,1,3,5,8,11,14,18,22,26,30,34,38,43,48,53,58,63,68,73,78,83,89,95, %T A005356 101,107,113,119,125,131,137,143,149,155,161,167,173,179,185,191,198, %U A005356 205,212,219,226,233,240,247,254,261,268,275,282,289,296 %N A005356 Number of low discrepancy sequences in base 2. %D A005356 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005356 Harald Niederreiter, <a href="http://dx.doi.org/10.1016/0022-314X(88)90025-X">Low-discrepancy and low-dispersion sequences</a>, J. Number Theory 30 (1988), no. 1, 51-70. %p A005356 N := proc(b,n) %p A005356 option remember; %p A005356 local d; %p A005356 add(b^d*numtheory[mobius](n/d),d=numtheory[divisors](n)) ; %p A005356 %/n ; %p A005356 end proc: %p A005356 M := proc(b,n) %p A005356 local h; %p A005356 if n = 0 then %p A005356 0; %p A005356 else %p A005356 add(N(b,h),h=1..n) ; %p A005356 end if; %p A005356 end proc: %p A005356 nMax := proc(b,s) %p A005356 local n; %p A005356 for n from 0 do %p A005356 if M(b,n) > s then %p A005356 return n-1 ; %p A005356 end if; %p A005356 end do: %p A005356 end proc: %p A005356 A005356 := proc(s) %p A005356 local n,b; %p A005356 b := 2 ; %p A005356 n := nMax(b,s) ; %p A005356 n*(s-M(b,n))+add( (h-1)*N(b,h),h=1..n) ; %p A005356 end proc: %p A005356 seq(A005356(n),n=1..40) ; # _R. J. Mathar_, Jun 09 2016 %t A005356 Np[b_, n_] := Np[b, n] = Sum[b^d*MoebiusMu[n/d], {d, Divisors[n]}]/n; %t A005356 M[b_, n_] := If[n == 0, 0, Sum[Np[b, h], {h, 1, n}]]; %t A005356 nMax[b_, s_] := Module[{n}, For[n = 0, True, n++, If[M[b, n] > s, Return[n - 1]]]]; %t A005356 a[s_] := Module[{n, b}, b = 2; n = nMax[b, s]; n*(s - M[b, n]) + Sum[(h - 1)*Np[b, h], {h, 1, n}]]; %t A005356 Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Mar 09 2023, after _R. J. Mathar_ *) %Y A005356 Cf. A005357 (base 3), A005377 (base 4), A005358 (base 5). %K A005356 nonn %O A005356 1,4 %A A005356 _N. J. A. Sloane_, _Simon Plouffe_ %E A005356 More terms from _Sean A. Irvine_, May 27 2016