This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005391 M5415 #24 Jul 08 2025 16:30:21 %S A005391 1,236,32675,4638576,681728204,102283239429,15513067188008, %T A005391 2365714170297014,361749878496079778,55391169255983979555, %U A005391 8487168277379774266411,1300854247070195164448395,199418506963731877069653608,30572953033472980838613625389 %N A005391 Number of Hamiltonian circuits on 2n X 8 rectangle. %C A005391 Bisection (even part) of A145418. - _Joerg Arndt_, Feb 05 2014 %D A005391 T. G. Schmalz, G. E. Hite and D. J. Klein, Compact self-avoiding circuits on two-dimensional lattices, J. Phys. A 17 (1984), 445-453. %D A005391 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005391 Alois P. Heinz, <a href="/A005391/b005391.txt">Table of n, a(n) for n = 1..200</a> %H A005391 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianCycle.html">Hamiltonian Cycle</a> %H A005391 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hamiltonian_circuit">Hamiltonian circuit</a> %K A005391 nonn %O A005391 1,2 %A A005391 _N. J. A. Sloane_ %E A005391 More terms from _Alois P. Heinz_, Feb 05 2014