cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005436 Number of convex polygons of perimeter 2n on square lattice.

This page as a plain text file.
%I A005436 M1778 #96 Feb 16 2025 08:32:28
%S A005436 1,2,7,28,120,528,2344,10416,46160,203680,894312,3907056,16986352,
%T A005436 73512288,316786960,1359763168,5815457184,24788842304,105340982248,
%U A005436 446389242480,1886695382192,7955156287456,33468262290096,140516110684832,588832418973280,2463133441338048
%N A005436 Number of convex polygons of perimeter 2n on square lattice.
%C A005436 Or, a(n) = number of convex polyominoes of perimeter 2n. - _David Callan_, Jul 25 2008
%D A005436 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005436 Robert Israel, <a href="/A005436/b005436.txt">Table of n, a(n) for n = 2..1650</a> (n = 2..105 from I. Jensen)
%H A005436 Peter Balazs, <a href="http://dx.doi.org/10.1007/978-3-540-73040-8_35">Generation and Empirical Investigation of hv-Convex Discrete Sets</a>, in Image Analysis, Lecture Notes in Computer Science, Volume 4522/2007, Springer-Verlag. [From _N. J. A. Sloane_, Jul 09 2009]
%H A005436 D. Battaglino, J. M. Fedou, S. Rinaldi and S. Socci, <a href="https://doi.org/10.46298/dmtcs.2370">The number of k-parallelogram polyominoes</a>, FPSAC 2013 Paris, France DMTCS Proc. AS, 2013, 1143-1154.
%H A005436 A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Rinaldi/rinaldi5.html">Permutations defining convex permutominoes</a>, J. Int. Seq. 10 (2007) # 07.9.7.
%H A005436 Adrien Boussicault and P. Laborde-Zubieta, <a href="https://arxiv.org/abs/1611.03766">Periodic Parallelogram Polyominoes</a>, arXiv preprint arXiv:1611.03766 [math.CO], 2016.
%H A005436 Adrien Boussicault, Simone Rinaldi, and Samanta Socci, <a href="https://arxiv.org/abs/1501.00872">The number of directed k-convex polyominoes</a>, arXiv preprint arXiv:1501.00872 [math.CO], 2015; Discrete Math., 343 (2020), #111731, 22 pages.
%H A005436 Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, and André Schulz, <a href="https://arxiv.org/abs/1903.01095">The Number of Convex Polyominoes with Given Height and Width</a>, arXiv:1903.01095 [math.CO], 2019.
%H A005436 M.-P. Delest and G. Viennot, <a href="http://dx.doi.org/10.1016/0304-3975(84)90116-6">Algebraic languages and polyominoes enumeration</a>, Theoretical Computer Sci., 34 (1984), 169-206.
%H A005436 F. Disanto, A. Frosini, R. Pinzani and S. Rinaldi, <a href="http://arxiv.org/abs/math/0702550">A closed formula for the number of convex permutominoes</a>, arXiv:math/0702550 [math.CO], 2007.
%H A005436 Filippo Disanto, Andrea Frosini, Simone Rinaldi, and Renzo Pinzani, <a href="http://www.seams-bull-math.ynu.edu.cn/downloadfile.jsp?filemenu=_200805&amp;filename=The%20Combinatorics%20of%20Convex%20Permutominoes.pdf">The Combinatorics of Convex Permutominoes</a>, Southeast Asian Bulletin of Mathematics (2008) 32: 883-912.
%H A005436 E. Duchi, S. Rinaldi and G. Schaeffer, <a href="http://arXiv.org/abs/math.CO/0602124">The number of Z-convex polyominoes</a>, arXiv:math/0602124 [math.CO], 2006.
%H A005436 I. G. Enting and A. J. Guttmann, <a href="http://dx.doi.org/10.1088/0305-4470/22/14/013">Area-weighted moments of convex polygons on the square lattice</a>, J. Phys. A 22 (1989), 2639-2642. See Eq. (4).
%H A005436 I. G. Enting and A. J. Guttmann, <a href="http://dx.doi.org/10.1007/BF01112757">On the area of square lattice polygons</a>, J. Statist. Phys., 58 (1990), 475-484. See p. 477.
%H A005436 A. J. Guttmann and I. G. Enting, <a href="http://dx.doi.org/10.1088/0305-4470/21/8/007">The number of convex polygons on the square and honeycomb lattices</a>, J. Phys. A 21 (1988), L467-L474.
%H A005436 I. Jensen, <a href="http://www.ms.unimelb.edu.au/~iwan/polygons/Polygons_ser.html">More terms</a>
%H A005436 K. Y. Lin and S. J. Chang, <a href="https://doi.org/10.1088/0305-4470/21/11/020">Rigorous results for the number of convex polygons on the square and honeycomb lattices</a>J. Phys. A: Math. Gen., 21 (1988), 2635-2642.
%H A005436 Anne Micheli and Dominique Rossin, <a href="https://doi.org/10.37236/3435">Counting k-Convex Polyominoes</a>, Electron. J. Combin., Volume 20, Issue 2 (2013), #P56.
%H A005436 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConvexPolyomino.html">Convex Polyomino</a>
%H A005436 V. M. Zhuravlev, <a href="http://www.mccme.ru/free-books/matpros/mph.pdf">Horizontally-convex polyiamonds and their generating functions</a>, Mat. Pros. 17 (2013), 107-129 (in Russian).
%F A005436 a(n) = (2*n + 3)*4^(n-4) - 4*(n-3)*C(2*n-7, n-4) for n >= 4. - Corrected by _Robert Israel_, Apr 04 2016
%F A005436 a(n) = A005768(n) + A005769(n) + A005770(n).
%F A005436 a(n) = (2*n+11)*4^n - 4*(2*n+1)*binomial(2*n,n) produces the terms (except the first two) with a different offset. - _N. J. A. Sloane_, Oct 14 2017
%F A005436 G.f.: x^2*(1-6*x+11*x^2-4*x^3)/(1-4*x)^2 - 4*x^4*(1-4*x)^(-3/2). - Markus Voege (voege(AT)blagny.inria.fr), Nov 28 2003
%F A005436 a(n) = (2*(8*n^2 -106*n +303)*a(n-1) - 8*(2*n-9)*(2*n-17)*a(n-2))/((n-4)*(2*n- 19)), with a(2) = 1, a(3) = 2, a(4) = 7, a(4) = 28. - _G. C. Greubel_, Nov 20 2022
%p A005436 t1:=x^2*( (1-6*x+11*x^2-4*x^3)/(1-4*x)^2 - 4*x^2/(1-4*x)^(3/2));
%p A005436 series(t1,x,40);
%p A005436 gfun:-seriestolist(%); # _N. J. A. Sloane_, Aug 02 2015
%t A005436 Join[{1, 2}, Table[(2 n + 11) 4^n - 4 (2 n + 1) Binomial[2 n, n], {n, 0, 25}]] (* _Vincenzo Librandi_, Jun 25 2015 *)
%o A005436 (Magma) [1,2] cat [4^n*(2*n+11)-4*(2*n+1)*Binomial(2*n,n): n in [0..25]]; // _Vincenzo Librandi_, Jun 25 2015
%o A005436 (SageMath)
%o A005436 def A005436(n): return (2*n+3)*4^(n-4) -4*(n-3)*binomial(2*n-7, n-4) + (9/16)*int(n==2) - (1/4)*int(n==3)
%o A005436 [A005436(n) for n in range(2,40)] # _G. C. Greubel_, Nov 20 2022
%Y A005436 Cf. A005768, A005769, A005770, A093118, A260346, A324009.
%K A005436 nonn
%O A005436 2,2
%A A005436 _Simon Plouffe_ and _N. J. A. Sloane_