This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005443 M2034 #54 Sep 01 2025 08:54:26 %S A005443 0,1,2,12,72,600,5760,65520,846720,12337920,199584000,3552595200, %T A005443 68976230400,1450895846400,32866215782400,797681364480000, %U A005443 20650793619456000,568032822669312000,16543733655601152000,508598164809326592000,16458582085314969600000 %N A005443 a(n) = n! * Fibonacci(n). %C A005443 From _Enrique Navarrete_, Aug 28 2025: (Start) %C A005443 Number of ways to seat n people on linearly ordered benches placing an odd number of people on each bench. %C A005443 For example, a(7) = 65520 since the number of ways are (number of people in parentheses): %C A005443 1 bench (7): 5040 ways; %C A005443 3 benches (5,1,1): 15120 ways; %C A005443 3 benches (3,3,1): 15120 ways; %C A005443 5 benches (3,1,1,1,1): 25200 ways; %C A005443 7 benches (1,1,1,1,1,1,1): 5040 ways. %C A005443 If the benches are not linearly ordered the number of ways is A088009. (End) %D A005443 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005443 Seiichi Manyama, <a href="/A005443/b005443.txt">Table of n, a(n) for n = 0..416</a> %H A005443 P. R. J. Asveld & N. J. A. Sloane, <a href="/A005442/a005442.pdf">Correspondence, 1987</a> %H A005443 P. R. J. Asveld, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/27-4/asveld.pdf">Fibonacci-like differential equations with a polynomial nonhomogeneous term</a>, Fib. Quart. 27 (1989), 303-309. %H A005443 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=511">Encyclopedia of Combinatorial Structures 511</a> %F A005443 a(n) = A039948(n, 1). %F A005443 E.g.f.: x/(1-x-x^2). - _Geoffrey Critzer_, Sep 01 2013 %F A005443 a(n) = n*a(n-1) + n*(n-1)*a(n-2). - _G. C. Greubel_, Nov 20 2022 %p A005443 ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 1)}, labelled]: seq(combstruct[count](ZL, size=n), n=0..18); # _Zerinvary Lajos_, Mar 26 2008 %t A005443 Table[Fibonacci[n]*n!, {n, 0, 25}] (* _Zerinvary Lajos_, Jul 09 2009 *) %o A005443 (PARI) a(n) = n!*fibonacci(n); \\ _Michel Marcus_, Oct 30 2015 %o A005443 (Magma) [Factorial(n)*Fibonacci(n): n in [0..30]]; // _G. C. Greubel_, Nov 20 2022 %o A005443 (SageMath) [fibonacci(n)*factorial(n) for n in range(31)] # _G. C. Greubel_, Nov 20 2022 %Y A005443 Cf. A000045, A000142, A005442, A039948, A088009. %K A005443 nonn,easy,changed %O A005443 0,3 %A A005443 _Simon Plouffe_ %E A005443 More terms from _James Sellers_, Dec 24 1999