This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005472 M3291 #36 Dec 08 2024 17:27:59 %S A005472 1,1,1,1,1,1,1,4,7,4,4,4,7,4,13,7,19,7,7,7,19,19,19,16,31,19,28,19,49, %T A005472 31,28,31,64,43,37,127,61,52,52,52,49,100,37,112,64,67,61,76,61,76,61, %U A005472 61,112,76,73,67,133,91,223,169,73,112,100,169,91,121,175 %N A005472 Class numbers of Shanks' simplest cubic fields. %C A005472 Class numbers of cubic fields with discriminants p^2, where p runs through the primes in A005471. %C A005472 All terms are of the form x^2 + 3*y^2 (A003136). - _Colin Barker_, Nov 30 2014 %D A005472 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005472 Robin Visser, <a href="/A005472/b005472.txt">Table of n, a(n) for n = 1..10000</a> (terms n = 1..100 from R. J. Mathar). %H A005472 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0352049-8">The simplest cubic fields</a>, Math. Comp., 28 (1974), 1137-1152 (see Table 1 page 1140). %o A005472 (PARI) A175282(n)={ %o A005472 local(a); %o A005472 if(n==1, %o A005472 return(1), %o A005472 a=A175282(n-1)+1; %o A005472 while(1, %o A005472 if( isprime(a^2+3*a+9), %o A005472 return(a), %o A005472 a++ %o A005472 ); %o A005472 ) %o A005472 ) %o A005472 }; %o A005472 A005472(n)={ %o A005472 local(a,bnf,L,H); %o A005472 if(n==1, return(1)); %o A005472 a=A175282(n); %o A005472 bnf=bnfinit(x^3-a*x^2-(a+3)*x-1); %o A005472 L=ideallist(bnf,1,2); %o A005472 H=bnrclassnolist(bnf,L); %o A005472 return(H[1][1]); %o A005472 }; %o A005472 for(n=1,80, print1(A005472(n)," ") ); /* _R. J. Mathar_, Jun 06 2019 */ %Y A005472 Cf. A003136, A005471, A005474. %K A005472 nonn %O A005472 1,8 %A A005472 _N. J. A. Sloane_ %E A005472 Name edited by _Robin Visser_, Dec 06 2024