This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005473 M3830 #76 Feb 16 2025 08:32:28 %S A005473 5,13,29,53,173,229,293,733,1093,1229,1373,2029,2213,3253,4229,4493, %T A005473 5333,7229,7573,9029,9413,10613,13229,13693,15629,18229,18773,21613, %U A005473 24029,26573,27893,31333,33493,37253,41213,42853,46229,47093,54293 %N A005473 Primes of form k^2 + 4. %C A005473 a(n) mod 24 = 5 or 13 and if a(n) mod 24 =13 then a(n) mod 72 = 13. %C A005473 From _Artur Jasinski_, Oct 30 2008: (Start) %C A005473 Primes p such that the continued fraction of (1+sqrt(p))/2 has period 1. %C A005473 Primes in A078370 = primes of the form 4*k^2 + 4*k + 5 = (2*k+1)^2 + 4. %C A005473 (End) %C A005473 Starting at a(3) all the primes in this sequence can be expressed as the following sum: ((2*k+1)*(2*k+3)+(2*k+3)*(2*k+5)+(2*k+5)+(2*k+7)+(2*k+7)*(2*k+9))/4 for some values (not all!) of k>=0. Thus for a(5)=173 the sum is (9*11 + 11*13 + 13*15 + 15*17)/4=173. - _J. M. Bergot_, Nov 03 2014 %D A005473 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005473 Vincenzo Librandi, <a href="/A005473/b005473.txt">Table of n, a(n) for n = 1..4600</a> %H A005473 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0352049-8">The simplest cubic fields</a>, Math. Comp., 28 (1974), 1137-1152. %H A005473 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Near-SquarePrime.html">Near-Square Prime</a> %F A005473 a(n) = 24*A056904(n)+m, where m=13 if A056904(n) is three times a triangular number (and n>0) and m=5 if A056904(n) is not three times a triangular number (or n=0). %F A005473 For n>=2, a(n) = A098062(n-1). - _Zak Seidov_, Apr 12 2007 %e A005473 a(2)=29 since 29=5^2+4 is prime. %p A005473 select(isprime,[seq(4*k^2 + 4*k + 5, k=0..1000)]); # _Robert Israel_, Nov 02 2014 %t A005473 Intersection[Table[n^2+4,{n,0,10^2}],Prime[Range[9*10^3]]] ...or... For[i=4,i<=4,a={};Do[If[PrimeQ[n^2+i],AppendTo[a,n^2+i]],{n,0,100}];Print["n^2+",i,",",a];i++ ] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2008 *) %t A005473 aa = {}; Do[If[PrimeQ[4 k^2 + 4 k + 5], AppendTo[aa, 4 k^2 + 4 k + 5]], {k, 0, 200}]; aa (* _Artur Jasinski_, Oct 30 2008 *) %t A005473 Select[Table[n^2+4,{n,0,7000}],PrimeQ] (* _Vincenzo Librandi_, Nov 30 2011 *) %o A005473 (PARI) for(n=1,1e3,if(isprime(t=n^2+4),print1(t","))) \\ _Charles R Greathouse IV_, Jul 05 2011 %o A005473 (Magma) [a: n in [0..300] | IsPrime(a) where a is n^2+4]; // _Vincenzo Librandi_, Nov 30 2011 %o A005473 (Haskell) %o A005473 a005473 n = a005473_list !! (n-1) %o A005473 a005473_list = filter ((== 1) . a010051') $ map (+ 4) a000290_list %o A005473 -- _Reinhard Zumkeller_, Mar 12 2012 %Y A005473 Subsequence of A185086. %Y A005473 a(n)-4 is contained in A016754. (a(n)-5)/8 is contained in A000217. Either (a(n)-5)/24 is contained in A001318 (if a(n) mod 24=5) or (a(n)-13)/72 is contained in A000217 (if a(n) mod 24=13). Floor[a(n)/24] is contained in A001840. %Y A005473 Cf. A146326, A010051, A000290, A138353, A098062. %K A005473 nonn,easy %O A005473 1,1 %A A005473 _N. J. A. Sloane_ %E A005473 More terms and additional comments from _Henry Bottomley_, Jul 06 2000