This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005474 M2215 #25 Jul 08 2025 16:31:13 %S A005474 1,1,1,1,1,3,1,3,5,3,3,7,3,5,7,3,3,5,9,7,3,5,5,15,9,19,5,13,9,9,5,19, %T A005474 9,5,7,15,13,9,9,15,25,13,9,27,19,15,21,7,13,11,23,9,13,13,11,33,15, %U A005474 25,23,15,13,29,21,17,43,35,27,33,17,17,27,45,11,63,15,31,17,15,33,15,31,31 %N A005474 Class numbers of the real quadratic fields Q(sqrt(A005473(n))). %D A005474 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005474 Robin Visser, <a href="/A005474/b005474.txt">Table of n, a(n) for n = 1..10000</a> %H A005474 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0352049-8">The simplest cubic fields</a>, Math. Comp., 28 (1974), 1137-1152 (see Table 2 page 1143). %H A005474 <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a> %o A005474 (Sage) %o A005474 def a(n): %o A005474 m, k = 1, 1 %o A005474 while (m < n): k += 1; m += (k^2+4).is_prime() %o A005474 return QuadraticField(k^2+4).class_number() # _Robin Visser_, Dec 07 2024 %Y A005474 Cf. A005472, A005473. %K A005474 nonn %O A005474 1,6 %A A005474 _N. J. A. Sloane_ %E A005474 More terms and name edited by _Robin Visser_, Dec 07 2024