This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A005477 #16 Aug 18 2025 02:12:09 %S A005477 0,1,18,420,16200,1138320,152681760,40012315200,20727639504000, %T A005477 21349793828563200,43852643645542617600,179883715700853141120000, %U A005477 1474687052822610564537600000,24170122236238340825650936320000,792151597973733707815459821941760000,51919200227802645600849976559054284800000 %N A005477 a(n) = 2^(n-1)*(2^n - 1)*Product_{j=1..n-1} (2^j + 1). %H A005477 G. C. Greubel, <a href="/A005477/b005477.txt">Table of n, a(n) for n = 0..75</a> %F A005477 a(n) = 2^(n-2)*(2^n - 1)*QPochhammer(n, -1, 2). - _G. C. Greubel_, Nov 25 2022 %F A005477 a(n) ~ c * 2^((n^2+3*n-4)/2), where c = Product_{k>=0} (1 + 1/2^k) = A081845. - _Amiram Eldar_, Aug 18 2025 %p A005477 f := i->2^(i-1)*(2^i-1)*product( '2^j+1','j'=1..i-1); %t A005477 Table[2^(n-1) (2^n-1)Product[2^j+1,{j,n-1}],{n,0,20}] (* _Harvey P. Dale_, Feb 02 2022 *) %t A005477 Table[2^(n-2)*(2^n-1)*QPochhammer[-1,2,n], {n,0,30}] (* _G. C. Greubel_, Nov 25 2022 *) %o A005477 (Magma) [n le 1 select n else 2^(n-1)*(2^n -1)*(&*[2^j+1: j in [1..n-1]]): n in [0..25]]; // _G. C. Greubel_, Nov 25 2022 %o A005477 (SageMath) %o A005477 def A005477(n): return 2^(n-2)*(2^n-1)*product(2^j+1 for j in range(n)) %o A005477 [A005477(n) for n in range(30)] # _G. C. Greubel_, Nov 25 2022 %Y A005477 Cf. A081845. %K A005477 nonn %O A005477 0,3 %A A005477 _N. J. A. Sloane_ %E A005477 a(0) prepended by _G. C. Greubel_, Nov 25 2022