cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005487 Starts 0, 4 and contains no 3-term arithmetic progression.

Original entry on oeis.org

0, 4, 5, 7, 11, 12, 16, 23, 26, 31, 33, 37, 38, 44, 49, 56, 73, 78, 80, 85, 95, 99, 106, 124, 128, 131, 136, 143, 169, 188, 197, 203, 220, 221, 226, 227, 238, 247, 259, 269, 276, 284, 287, 302, 308, 310, 313, 319, 337, 385, 392, 397, 422, 434, 455, 466, 470
Offset: 0

Views

Author

Keywords

Comments

This is what would now be called the Stanley Sequence S(0,4). See A185256.

References

  • R. K. Guy, Unsolved Problems in Number Theory, E10.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A033158(n+1)-1. Cf. A185256.

Programs

  • Mathematica
    ss[s1_, M_] := Module[{n, chvec, swi, p, s2, i, j, t1, mmm}, t1 = Length[s1]; mmm = 1000; s2 = Table[s1, {t1 + M}] // Flatten; chvec = Array[0&, mmm]; For[i = 1 , i <= t1 , i++, chvec[[s2[[i]] ]] = 1]; (* get n-th term *) For[n = t1+1 , n <= t1 + M , n++, (* try i as next term *) For[i = s2[[n-1]] + 1 , i <= mmm , i++, swi = -1; (* test against j-th term *) For[ j = 1 , j <= n-2 , j++, p = s2[[n - j]]; If[ 2*p - i < 0 , Break[] ]; If[ chvec[[2*p - i]] == 1 , swi = 1; Break[] ] ]; If[ swi == -1 , s2[[n]] = i; chvec[[i]] = 1; Break[] ] ]; If[ swi == 1 , Print["Error, no solution at n = ", n] ] ]; Table[s2[[i]], {i, 1, t1+M}] ]; ss[{0, 4}, 80] (* Jean-François Alcover, Sep 10 2013, translated from Maple program given in A185256 *)
  • Python
    A005487_list = [0,4]
    for i in range(101-2):
        n, flag = A005487_list[-1]+1, False
        while True:
            for j in range(i+1,0,-1):
                m = 2*A005487_list[j]-n
                if m in A005487_list:
                    break
                if m < A005487_list[0]:
                    flag = True
                    break
            else:
                A005487_list.append(n)
                break
            if flag:
                A005487_list.append(n)
                break
            n += 1 # Chai Wah Wu, Jan 05 2016

Extensions

Name clarified by Charles R Greathouse IV, Jan 30 2014