cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005549 Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (0,3).

This page as a plain text file.
%I A005549 M4842 #23 Dec 26 2021 21:20:30
%S A005549 1,12,54,188,636,2168,7556,26826,96724,353390,1305126,4864450,
%T A005549 18272804,69103526,262871644,1005137688,3860909698,14890903690,
%U A005549 57641869140,223864731680,872028568182,3406103773674,13337263822236
%N A005549 Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (0,3).
%C A005549 The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
%D A005549 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005549 D. S. McKenzie, <a href="http://dx.doi.org/10.1088/0305-4470/6/3/009">The end-to-end length distribution of self-avoiding walks</a>, J. Phys. A 6 (1973), 338-352.
%H A005549 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a>
%Y A005549 Cf. A001335, A003289, A003290, A003291, A005550, A005551, A005552, A005553.
%K A005549 nonn,walk,more
%O A005549 3,2
%A A005549 _N. J. A. Sloane_
%E A005549 More terms and improved title from _Sean A. Irvine_, Feb 14 2016
%E A005549 a(23)-a(25) from _Bert Dobbelaere_, Jan 15 2019